Advertisement

AAPS PharmSciTech

, Volume 19, Issue 4, pp 1529–1543 | Cite as

Enhancing the Therapeutic Efficacy of Tamoxifen Citrate Loaded Span-Based Nano-Vesicles on Human Breast Adenocarcinoma Cells

  • Mohammed A. Kassem
  • Mohamed A. Megahed
  • Sherif K. Abu Elyazid
  • Fathy I. Abd-Allah
  • Tamer M. Abdelghany
  • Ahmed M. Al-Abd
  • Khalid M. El-SayEmail author
Research Article

Abstract

Serious adverse effects and low selectivity to cancer cells are the main obstacles of long term therapy with Tamoxifen (Tmx). This study aimed to develop Tmx-loaded span-based nano-vesicles for delivery to malignant tissues with maximum efficacy. The effect of three variables on vesicle size (Y1), zeta potential (Y2), entrapment efficiency (Y3) and the cumulative percent release after 24 h (Y4) were optimized using Box-Behnken design. The optimized formula was prepared and tested for its stability in different storage conditions. The observed values for the optimized formula were 310.2 nm, − 42.09 mV, 75.45 and 71.70% for Y1, Y2, Y3, and Y4, respectively. The examination using electron microscopy confirmed the formation of rounded vesicles with distinctive bilayer structure. Moreover, the cytotoxic activity of the optimized formula on both breast cancer cells (MCF-7) and normal cells (BHK) showed enhanced selectivity (9.4 folds) on cancerous cells with IC50 values 4.7 ± 1.5 and 44.3 ± 1.3 μg/ml on cancer and normal cells, respectively. While, free Tmx exhibited lower selectivity (2.5 folds) than optimized nano-vesicles on cancer cells with IC50 values of 9.0 ± 1.1 μg/ml and 22.5 ± 5.3 μg/ml on MCF-7 and BHK cells, respectively. The promising prepared vesicular system, with greater efficacy and selectivity, provides a marvelous tool to overcome breast cancer treatment challenges.

KEY WORDS

Box-Behnken design Breast cancer cells In vitro cytotoxicity Optimization Tamoxifen citrate 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin [Internet]. 2008;58(2):71–96. Available from: http://doi.wiley.com/10.3322/CA.2007.0010.CrossRefGoogle Scholar
  2. 2.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.  https://doi.org/10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.  https://doi.org/10.1002/ijc.29210.CrossRefPubMedGoogle Scholar
  4. 4.
    Lukong KE. Understanding breast cancer – the long and winding road. BBA Clin. 2017;7:64–77.  https://doi.org/10.1016/j.bbacli.2017.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pandey SK, Ghosh S, Maiti P, Haldar C. Therapeutic efficacy and toxicity of tamoxifen loaded PLA nanoparticles for breast cancer. Int J Biol Macromol. 2015;72:309–19.  https://doi.org/10.1016/j.ijbiomac.2014.08.012. Elsevier BV.CrossRefPubMedGoogle Scholar
  6. 6.
    Au JS, Jang SH, Zheng J, Chen CT, Song S, Hu L, et al. Determinants of drug delivery and transport to solid tumors. J Control Release. 2001;74(1–3):31–46.  https://doi.org/10.1016/S0168-3659(01)00308-X.CrossRefPubMedGoogle Scholar
  7. 7.
    Murray AJ, Davies DM. The genetics of breast cancer. Surgery (United Kingdom). 2013;31(1):1–3. Elsevier Ltd.Google Scholar
  8. 8.
    Altmeyer C, Karam TK, Khalil NM, Mainardes RM. Tamoxifen-loaded poly(L-lactide) nanoparticles: development, characterization and in vitro evaluation of cytotoxicity. Mater Sci Eng C. 2016;60:135–42.  https://doi.org/10.1016/j.msec.2015.11.019. Elsevier BV.CrossRefGoogle Scholar
  9. 9.
    Radin DP, Patel P. Delineating the molecular mechanisms of tamoxifen’s oncolytic actions in estrogen receptor-negative cancers. Eur J Pharmacol. 2016;781:173–80.  https://doi.org/10.1016/j.ejphar.2016.04.017. Elsevier.CrossRefPubMedGoogle Scholar
  10. 10.
    Spears M, Bartlett J. The potential role of estrogen receptors and the SRC family as targets for the treatment of breast cancer. Expert Opin Ther Targets. 2009;13(6):665–74.  https://doi.org/10.1517/14728220902911509.CrossRefPubMedGoogle Scholar
  11. 11.
    Jordan VC. Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol. 2006;147(Suppl 1):S269–76.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Barron AJ, Zaman N, Cole GD, Wensel R, Okonko DO, Francis DP. Systematic review of genuine versus spurious side-effects of beta-blockers in heart failure using placebo control: recommendations for patient information. Int J Cardiol [Internet]. Elsevier; 2013 Oct 9 [cited 2017 Apr 16];168(4):3572–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23796325.
  13. 13.
    Kouchakzadeh H, Shojaosadati SA, Shokri F. Efficient loading and entrapment of tamoxifen in human serum albumin based nanoparticulate delivery system by a modified desolvation technique. Chem Eng Res Des. 2014;92(9):1681–92. Institution of Chemical EngineersCrossRefGoogle Scholar
  14. 14.
    Mugundu GM, Sallans L, Guo Y, Shaughnessy EA, Desai PB. Assessment of the impact of CYP3A polymorphisms on the formation of alpha hydroxytamoxifen and N-desmethyltamoxifen in human liver microsomes. Drug Metab Dispos. 2012;40(2):389–96.  https://doi.org/10.1124/dmd.111.039388.CrossRefPubMedGoogle Scholar
  15. 15.
    Zembutsu H. Pharmacogenomics toward personalized tamoxifen therapy for breast cancer. Pharmacogenomics. 2015;16(3):287–96.  https://doi.org/10.2217/pgs.14.171.CrossRefPubMedGoogle Scholar
  16. 16.
    Stevens DM, Gilmore KA, Harth E. An assessment of nanosponges for intravenous and oral drug delivery of BCS class IV drugs: drug delivery kinetics and solubilization. Polym Chem. 2014;5(11):3551–4.CrossRefGoogle Scholar
  17. 17.
    Lockhart JN, Stevens DM, Beezer DB, Kravitz A, Harth E. Dual drug delivery of tamoxifen and quercetin: Regulated metabolism for anticancer treatment with nanosponges. J Control Release. 2015;220:751–7. Elsevier B.V.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee MH, Kim JW, Kim JH, Kang KS, Kong G, Lee MO. Gene expression profiling of murine hepatic steatosis induced by tamoxifen. Toxicol Lett. 2010;199(3):416–24.  https://doi.org/10.1016/j.toxlet.2010.10.008. Elsevier Ireland Ltd.CrossRefPubMedGoogle Scholar
  19. 19.
    Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.  https://doi.org/10.1038/nrd2614.CrossRefPubMedGoogle Scholar
  20. 20.
    Xin Y, Huang Q, Tang JQ, Hou XY, Zhang P, Zhang LZ, et al. Nanoscale drug delivery for targeted chemotherapy. Cancer Lett. 2016;379(1):24–31.  https://doi.org/10.1016/j.canlet.2016.05.023. Elsevier Ireland Ltd.CrossRefPubMedGoogle Scholar
  21. 21.
    Panzarini E, Inguscio V, Tenuzzo B, Carata E, Dini L. Nanomaterials and autophagy: new insights in cancer treatment. Cancers (Basel). 2013;5(1):296–319.  https://doi.org/10.3390/cancers5010296.CrossRefGoogle Scholar
  22. 22.
    Bansal D, Gulbake A, Tiwari J, Jain SK. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. Int J Biol Macromol. 2016;82:687–95.  https://doi.org/10.1016/j.ijbiomac.2015.09.052. Elsevier B.V.CrossRefPubMedGoogle Scholar
  23. 23.
    Jeong K, Kang CS, Kim Y, Lee Y-D, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett. 2016;374(1):31–43.  https://doi.org/10.1016/j.canlet.2016.01.050. Elsevier Ireland Ltd.CrossRefPubMedGoogle Scholar
  24. 24.
    Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev. Elsevier B.V. 2016;98:3–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Patel P, Agrawal YK. Targeting nanocarriers containing antisense oligonucleotides to cancer cell. J Drug Deliv Sci Technol. 2017;37:97–114.  https://doi.org/10.1016/j.jddst.2016.12.001. Elsevier Ltd.CrossRefGoogle Scholar
  26. 26.
    Ghanbarzadeh S, Khorrami A, Arami S. Nonionic surfactant-based vesicular system for transdermal drug delivery. Drug Deliv. 2014;7544:1–7.Google Scholar
  27. 27.
    Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci [Internet]. 2014 Mar [cited 2014 Nov 27];205:187–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24369107.
  28. 28.
    Bayindir ZS, Yuksel N. Characterization of niosomes pepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Technol 2010;99(4):2049–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19780133.
  29. 29.
    Shilpa S, Srinivasan BP, Chauhan M. Niosomes as vesicular carriers for delivery of proteins and biologicals. Int J Drug Deliv. 2011;3(1):14–24.  https://doi.org/10.5138/ijdd.2010.0975.0215.03050.CrossRefGoogle Scholar
  30. 30.
    Bragagni M, Mennini N, Furlanetto S, Orlandini S, Ghelardini C, Mura P. Development and characterization of functionalized niosomes for brain targeting of dynorphin-B. Eur J Pharm Biopharm. 2014;87(1):73–9.  https://doi.org/10.1016/j.ejpb.2014.01.006. Elsevier BV.CrossRefPubMedGoogle Scholar
  31. 31.
    Marianecci C, Di Marzio L, Del Favero E, Cantu L, Brocca P, Rondelli V, et al. Niosomes as drug nanovectors: multiscale pH-dependent structural response. Langmuir. 2016;32(5):1241–9.  https://doi.org/10.1021/acs.langmuir.5b04111.CrossRefPubMedGoogle Scholar
  32. 32.
    Khoee S, Yaghoobian M. Niosomes: a novel approach in modern drug delivery systems. Nanostructures for Drug Delivery. Elsevier Inc.; 2017. p. 207-237.  https://doi.org/10.1016/B978-0-323-46143-6.00006-3.
  33. 33.
    Hao Y, Zhao F, Li N, Yang Y, Li K. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm [Internet]. 2002 Sep [cited 2014 Dec 11];244 (1–2):73–80. Available from: http://www.sciencedirect.com/science/article/pii/S0378517302003010.
  34. 34.
    Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surfaces B Biointerfaces [Internet]. 2003 Jul [cited 2014 Nov 12];30 (1–2):129–38. Available from: http://www.sciencedirect.com/science/article/pii/S0927776503000808.
  35. 35.
    Yeom S, Shin BS, Han S. An electron spin resonance study of non-ionic surfactant vesicles (niosomes). Chem Phys Lipids. 2014;181:83–9.  https://doi.org/10.1016/j.chemphyslip.2014.03.004. Elsevier Ireland Ltd.CrossRefPubMedGoogle Scholar
  36. 36.
    Yoshioka T, Sternberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sobitan monoesters (Span 20, 40, 60, 80) and a sorbitan triester (Span 85). Int J Pharm. 1994;105:1–6.CrossRefGoogle Scholar
  37. 37.
    El-Say KMKM, Abd-Allah FI, Lila AE, Hassan AE-SA, Kassem AEA. Diacerein niosomal gel for topical delivery: development, in vitro and in vivo assessment. J Liposome Res [Internet]. 2016;26(1):57–68. Available from: http://informahealthcare.com/doi/abs/10.3109/08982104.2015.1029495.CrossRefGoogle Scholar
  38. 38.
    Kassem MA, El-Sawy HS, Abd-Allah FI, Abdelghany TM, El-Say KM. Maximizing the therapeutic efficacy of imatinib mesylate–loaded niosomes on human colon adenocarcinoma using Box-Behnken design. J Pharm Sci. 2017;106(1):111–22.  https://doi.org/10.1016/j.xphs.2016.07.007.CrossRefPubMedGoogle Scholar
  39. 39.
    El-Ridy MS, Abdelbary A, Essam T, Abd EL-Salam RM, Aly Kassem AA, El-Salam RMA, et al. Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin. Drug Dev Ind Pharm [Internet]. 2011 Dec 27 [cited 2017 Oct 13];37 (12):1491–508. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21707323.
  40. 40.
    Attia IA, El-Gizawy SA, Fouda MA, Donia AM. Influence of a niosomal formulation on the oral bioavailability of acyclovir in rabbits. AAPS PharmSciTech. 2007;8(4):E106.  https://doi.org/10.1208/pt0804106.CrossRefPubMedGoogle Scholar
  41. 41.
    Arafa MG, Ayoub BM. DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled drug delivery systems. Sci Rep. 2017;7(January):41503. Nature Publishing Group.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm [Internet]. 2008 [cited 2014 Feb 11];361 (1–2):104–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18577437.
  43. 43.
    Li Y, Zhao X, Zu Y, Zhang Y. Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization. Int J Pharm. 2015;490(1):324–33.  https://doi.org/10.1016/j.ijpharm.2015.05.070.CrossRefPubMedGoogle Scholar
  44. 44.
    Ahmed TA, El-Say KM, Aljaeid BM, Fahmy UA, Abd-Allah FI. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: preparation, characterization, in vitro,ex vivo and clinical evaluation. Int Joumal Pharm [Internet]. Elsevier B.V.; 2016; 500 (1–2):245–54. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378517316300187.
  45. 45.
    Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353(1–2):233–42.CrossRefPubMedGoogle Scholar
  46. 46.
    Mahmoudi Z, Upadhye S, Ferrizzi D, Rajabi-Siahboomi A. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions. AAPS J. 2014;16(4):685–97.  https://doi.org/10.1208/s12248-014-9590-y.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shaker DS, Shaker MA, Hanafy MS. Cellular uptake, cytotoxicity and in-vivo evaluation of tamoxifen citrate loaded niosomes. Int J Pharm. 2015;493(1–2):285–94.CrossRefPubMedGoogle Scholar
  48. 48.
    Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release. 2009;133(1):11–7.  https://doi.org/10.1016/j.jconrel.2008.09.086. Elsevier BV.CrossRefPubMedGoogle Scholar
  49. 49.
    Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro anticancer activity against neuroblastoma cells. Int J Pharm. 2012;437(1–2):29–41. Elsevier B.V.CrossRefPubMedGoogle Scholar
  50. 50.
    El-Nabarawi MA, Bendas ER, El Rehem RTA, Abary MYS. Transdermal drug delivery of paroxetine through lipid-vesicular formulation to augment its bioavailability. Int J Pharm. 2013;443(1–2):307–17. Elsevier B.V.CrossRefPubMedGoogle Scholar
  51. 51.
    Thakur V, Kush P, Pandey RS, Jain UK, Chandra R, Madan J. Vincristine sulfate loaded dextran microspheres amalgamated with thermosensitive gel offered sustained release and enhanced cytotoxicity in THP-1, human leukemia cells: in vitro and in vivo study. Mater Sci Eng C. 2016;61:113–22.  https://doi.org/10.1016/j.msec.2015.12.015. Elsevier B.V.CrossRefGoogle Scholar
  52. 52.
    Qadir A, Faiyazuddin MD, Talib Hussain MD, Alshammari TM, Shakeel F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J Mol Liq. 2016;214:7–18.  https://doi.org/10.1016/j.molliq.2015.11.050. Elsevier BV.CrossRefGoogle Scholar
  53. 53.
    Manconi M, Sinico C, Valenti D, Lai F, Fadda AM. Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm. 2006;311(1–2):11–9.CrossRefPubMedGoogle Scholar
  54. 54.
    El-Ridy MS, AA AER, Awad GM, Khalil RM, Younis MM. In-vitro and in-vivo evaluation of niosomes containing celecoxib. Int J Pharm Sci Res. 2014;5(11):4677–88.Google Scholar
  55. 55.
    Ertekin ZC, Bayindir ZS, Yuksel N. Stability studies on piroxicam encapsulated niosomes. Curr Drug Deliv. 2015;12(2):192–9.  https://doi.org/10.2174/1567201811666140723115852.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang Y, Zhang K, Wu Z, Guo T, Ye B, Lu M, et al. Evaluation of transdermal salidroside delivery using niosomes via in vitro cellular uptake. Int J Pharm. 2015;478(1):138–46.  https://doi.org/10.1016/j.ijpharm.2014.11.018. Elsevier BV.CrossRefPubMedGoogle Scholar
  57. 57.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.  https://doi.org/10.1016/0022-1759(83)90303-4.CrossRefPubMedGoogle Scholar
  58. 58.
    Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988;48(17):4827–33.PubMedGoogle Scholar
  59. 59.
    Mahmoud AM, Al-Abd AM, Lightfoot DA, El-Shemy HA. Anti-cancer characteristics of mevinolin against three different solid tumor cell lines was not solely p 53-dependent. J Enzyme Inhib Med Chem [Internet]. 2012 [cited 2017 Oct 9];27(5):673–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21883038.
  60. 60.
    Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, et al. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp [Internet]. 2013 [cited 2016 Jun 29];73 (e50166):1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23524982.
  61. 61.
    Abdelkader H, Ismail S, Kamal A, Alany RG. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci. 2011;99(10):1833–46.CrossRefGoogle Scholar
  62. 62.
    Guinedi AS, Mortada ND, Mansour S, Hathout RM. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm [Internet]. 2005 Dec 8 [cited 2014 Nov 27];306 (1–2):71–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16263229.
  63. 63.
    Nasr M, Mansour S, Mortada ND, Elshamy AA. Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. J Microencapsul [Internet]. Informa UK Ltd UK; 2008 7 [cited 2014 Nov 27];25(7):499–512. Available from: http://informahealthcare.com/doi/abs/10.1080/02652040802055411.
  64. 64.
    Sahoo RK, Biswas N, Guha A, Sahoo N, Kuotsu K. Development and in vitro/in vivo evaluation of controlled release provesicles of a nateglinide–maltodextrin complex. Acta Pharm Sin B. 2014;4(5):408–16.  https://doi.org/10.1016/j.apsb.2014.08.001. Elsevier.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Pezeshky A, Ghanbarzadeh B, Hamishehkar H, Moghadam M, Babazadeh A. Vitamin A palmitate-bearing nanoliposomes: preparation and characterization. Food Biosci. 2016;13:49–55.  https://doi.org/10.1016/j.fbio.2015.12.002. Elsevier.CrossRefGoogle Scholar
  66. 66.
    Traikia M, Warschawski DE, Recouvreur M, Cartaud J, Devaux PF. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31 P-nuclear magnetic resonance. Eur Biophys J. 2000;29(3):184–95.CrossRefPubMedGoogle Scholar
  67. 67.
    Yoshida H, Lehr CM, Kok W, Junginger HE, Verhoef JC, Bouwstra JA. Niosomes for oral delivery of peptide drugs. J Control Release. 1992;21(1–3):145–53.  https://doi.org/10.1016/0168-3659(92)90016-K.CrossRefGoogle Scholar
  68. 68.
    Shaker DS, Shaker MA, Klingner A, Hanafy MS. In situ thermosensitive Tamoxifen citrate loaded hydrogels: an effective tool in breast cancer loco-regional therapy. J Drug Deliv Sci Technol. 2016;35:155–64.  https://doi.org/10.1016/j.jddst.2016.05.007. Elsevier Ltd.CrossRefGoogle Scholar
  69. 69.
    Moazeni E, Gilani K, Sotoudegan F, Pardakhty A, Najafabadi AR, Ghalandari R, et al. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J Microencapsul. 2010;27(7):618–27.  https://doi.org/10.3109/02652048.2010.506579.CrossRefPubMedGoogle Scholar
  70. 70.
    Cortesi R, Esposito E, Corradini F, Sivieri E, Drechsler M, Rossi A, et al. Non-phospholipid vesicles as carriers for peptides and proteins: production, characterization and stability studies. Int J Pharm. 2007;339(1–2):52–60.  https://doi.org/10.1016/j.ijpharm.2007.02.024.CrossRefPubMedGoogle Scholar
  71. 71.
    Di Marzio L, Marianecci C, Petrone M, Rinaldi F, Carafa M. Novel pH-sensitive non-ionic surfactant vesicles: comparison between Tween 21 and Tween 20. Colloids Surfaces B Biointerfaces. 2011;82(1):18–24.  https://doi.org/10.1016/j.colsurfb.2010.08.004. Elsevier BV.CrossRefPubMedGoogle Scholar
  72. 72.
    Hashim F, El-Ridy M, Nasr M, Abdallah Y. Preparation and characterization of niosomes containing ribavirin for liver targeting. Drug Deliv. 2010;17(5):282–7.  https://doi.org/10.3109/10717541003706257.CrossRefPubMedGoogle Scholar
  73. 73.
    Muzzalupo R, Trombino S, Iemma F, Puoci F, La Mesa C, Picci N. Preparation and characterization of bolaform surfactant vesicles. Colloids Surfaces B Biointerfaces. 2005;46(2):78–83.  https://doi.org/10.1016/j.colsurfb.2005.09.003.CrossRefPubMedGoogle Scholar
  74. 74.
    Sathyavathi V, Hasansathali AA, Ilavarasan R, Sangeetha A. Formulation and evaluation of niosomal in situ gel ocular delivery system of brimonidine tartrate and hydrogels. Int J life Sci Pharm Res. 2012;2(1):L-82–95.Google Scholar
  75. 75.
    Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm [Internet]. 2007 [cited 2014 Dec 17];328(2):130–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16997517.
  76. 76.
    Aboelwafa AA, El-Setouhy DA, Elmeshad AN. Comparative study on the effects of some polyoxyethylene alkyl ether and sorbitan fatty acid ester surfactants on the performance of transdermal carvedilol proniosomal gel using experimental design. AAPS PharmSciTech [Internet]. 2010 Dec [cited 2014 Feb 19];11(4):1591–602. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3011071&tool=pmcentrez&rendertype=abstract.
  77. 77.
    El-Laithy HM, Shoukry O, Mahran LG. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm [Internet]. Elsevier B.V.; 2011 Jan [cited 2014 Apr 23];77(1):43–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21056658.
  78. 78.
    Devaraj GN, Parakh SR, Devraj R, Apte SS, Rao BR, Rambhau D. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J Colloid Interface Sci. 2002;251(2):360–5.  https://doi.org/10.1006/jcis.2002.8399.CrossRefPubMedGoogle Scholar
  79. 79.
    Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech. 2010;11(3):1119–27.  https://doi.org/10.1208/s12249-010-9480-2.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech [Internet]. 2008 Jan [cited 2014 Dec 4];9(3):740–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2977028&tool=pmcentrez&rendertype=abstract.
  81. 81.
    Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, et al. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179–86.  https://doi.org/10.1016/j.aca.2007.07.011.CrossRefPubMedGoogle Scholar
  82. 82.
    Armengol X, Estelrich J. Physical stability of different liposome compositions obtained by extrusion method. J Microencapsul. 1995;12(5):525–35.  https://doi.org/10.3109/02652049509006783.CrossRefPubMedGoogle Scholar
  83. 83.
    Pokharkar VB, Mandpe LP, Padamwar MN, Ambike AA, Mahadik KR, Paradkar A. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol [Internet]. 2006 Sep [cited 2014 Oct 29];167(1):20–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0032591006001732.
  84. 84.
    Hanaor D, Michelazzi M, Leonelli C, Sorrell CC. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc. 2012;32(1):235–44.  https://doi.org/10.1016/j.jeurceramsoc.2011.08.015. Elsevier Ltd.CrossRefGoogle Scholar
  85. 85.
    Chaudhary PM, Roninson IB. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst [Internet]. 1993 Apr 21 [cited 2017 Oct 9];85(8):632–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8096875.
  86. 86.
    Kern DH, Weisenthal LM. Highly specific prediction of antineoplastic drug resistance with an in vitro assay using suprapharmacologic drug exposures. J Natl Cancer Inst [Internet]. 1990 [cited 2017 Oct 9];82(7):582–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2313735.
  87. 87.
    El-Araby ME, Omar AM, Khayat MT, Assiri HA, Al-Abd AM. Molecular mimics of classic P-glycoprotein inhibitors as multidrug resistance suppressors and their synergistic effect on paclitaxel. PLoS One [Internet]. Public Library of Science; 2017 [cited 2017 Oct 9];12(1):e0168938. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28068430.
  88. 88.
    Chandratre SS, Dash AK. Multifunctional nanoparticles for prostate cancer therapy. Am Assoc Pharm Sci. 2015;16(1):98–107.Google Scholar
  89. 89.
    Mortazavi SM, Mohammadabadi MR, Khosravi-Darani K, Mozafari MR. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. J Biotechnol. 2007;129(4):604–13.  https://doi.org/10.1016/j.jbiotec.2007.02.005.CrossRefPubMedGoogle Scholar
  90. 90.
    Shenoy VS, Gude RP, Murthy RS. In vitro anticancer evaluation of 5-fluorouracil lipid nanoparticles using B16F10 melanoma cell lines. Int Nano Lett. 2013;3(1):36.  https://doi.org/10.1186/2228-5326-3-36.CrossRefGoogle Scholar
  91. 91.
    Tavano L, Aiello R, Ioele G, Picci N, Muzzalupo R. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: preparation, characterization and biological properties. Colloids Surfaces B Biointerfaces. 2014;118:7–13. Elsevier B.V.CrossRefPubMedGoogle Scholar
  92. 92.
    Sharma V, Anandhakumar S, Sasidharan M. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery. Mater Sci Eng C Mater Biol Appl [Internet]. Elsevier B.V.; 2015 Nov 1 [cited 2017 Oct 13];56:393–400. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26249606.
  93. 93.
    Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Orig Investig [Internet]. 2008 [cited 2017 Oct 9];26(1):57–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18190833.

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Mohammed A. Kassem
    • 1
  • Mohamed A. Megahed
    • 2
  • Sherif K. Abu Elyazid
    • 2
    • 3
  • Fathy I. Abd-Allah
    • 2
    • 3
  • Tamer M. Abdelghany
    • 4
  • Ahmed M. Al-Abd
    • 5
    • 6
    • 7
  • Khalid M. El-Say
    • 3
    • 8
    Email author
  1. 1.Department of Pharmaceutics and Industrial PharmacyCairo UniversityCairoEgypt
  2. 2.Department of Pharmaceutics and Pharmaceutical TechnologyEgyptian Russian UniversityCairoEgypt
  3. 3.Department of Pharmaceutics and Industrial PharmacyAl-Azhar UniversityCairoEgypt
  4. 4.Department of Pharmacology and ToxicologyAl-Azhar UniversityCairoEgypt
  5. 5.Department of Pharmacology and ToxicologyKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Pharmacology Department, Medical DivisionNational Research CenterGizaEgypt
  7. 7.Biomedical Research SectionNawah ScientificCairoEgypt
  8. 8.Department of PharmaceuticsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations