Advertisement

AAPS PharmSciTech

, Volume 19, Issue 3, pp 1454–1467 | Cite as

Inhalable Levofloxacin Liposomes Complemented with Lysozyme for Treatment of Pulmonary Infection in Rats: Effective Antimicrobial and Antibiofilm Strategy

  • Purnima V. Gupta
  • Abhijit M. Nirwane
  • Mangal S. Nagarsenker
Research Article

Abstract

Treatment of bacterial infections becomes increasingly complicated due to increasing bacterial resistance and difficulty in developing new antimicrobial agents. Emphasis should be laid on improvising the existing treatment modalities. We studied the improved antimicrobial and antibiofilm activity of levofloxacin (LFX) and lysozyme (LYS) in microbiological studies. LFX at sub-minimum inhibitory concentration with LYS eradicated > 85% of preformed biofilm. LFX was actively loaded into the liposomes using pH gradient method and was spray-dried with LYS solution. Percent entrapment of LFX in liposome was > 80% and prolonged cumulative release of 85% LFX at the end of 12 h. In vitro lung deposition study and solid-state characterization for spray dried LFX liposome in combination with LYS (LFX liposome-LYS) was performed. Co-spray dried product had mass median aerodynamic diameter ranging < 5 μm. In pharmacodynamic study, Staphylococcus aureus infected rats were treated with LFX liposome-LYS. Lungs, bronchoalveolar lavage fluid (BALF), and nasal fluid were evaluated for microbial burden. Expression of cytokine levels in BALF and serum were also studied by ELISA. In addition, mRNA expression for lung inflammatory mediators and lung myeloperoxidase activity were carried out. Further, lungs and histological changes were observed grossly. Untreated infected rat lungs demonstrated higher mRNA expression for inflammatory markers, cytokine levels, and microbial load compared to vehicle control. Conversely, LFX liposome-LYS significantly abated these adverse repercussions. Histology findings were also in agreement of above. Acute toxicity study revealed safeness of LFX liposome-LYS. Our findings confirm LFX liposome-LYS exhibited prolonged, improved antibiofilm and antimicrobial efficacy in treating S. aureus infection.

KEY WORDS

biofilm antibiotic enzyme Staphylococcus aureus liposome 

Notes

Acknowledgements

This research work was supported by Indian Council of Medical Research (ICMR), File No. AMR/4/2011- ECD-I, New Delhi, India.

Compliance with Ethical Standards

Protocol of in vivo study was approved by the Institution Animal Ethics Committee Bombay College of Pharmacy and carried out in accordance with the guidelines of Committee for the Purpose and Supervision of Animal Experiments.

Supplementary material

12249_2017_945_Fig13_ESM.gif (42 kb)
Figure S1

(GIF 42 kb)

12249_2017_945_MOESM1_ESM.tif (16 mb)
High Resolution Image (TIFF 16359 kb)
12249_2017_945_MOESM2_ESM.docx (14 kb)
Table S1 (DOCX 13 kb)

References

  1. 1.
    Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 2014;4(178):1–9.Google Scholar
  2. 2.
    Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99.CrossRefPubMedGoogle Scholar
  3. 3.
    Waters V, Smyth A. Cystic fibrosis microbiology: advances in antimicrobial therapy. J Cyst Fibros. 2015;14(5):551–60.CrossRefPubMedGoogle Scholar
  4. 4.
    Zakaria AS, Melake NA, Baky NA, El Rasheed NM, Ibrahim NH. In vitro and in vivo studies of antibacterial effect of ceftriaxone moxifloxacin combination against methicillin resistant Staphylococcus aureus biofilms formed on biomedical implants. Afr J Microbiol Res. 2012;6(25):5399–409.Google Scholar
  5. 5.
    Archer N, Mazaitis M, Costerton J, Leid J, Powers M, Shirtliff M. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2:445–59.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu H, Zhao Y, Zhao D, Gong T, Wu Y, Han H, et al. Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical staphylococcus strains. Emerg Microbes Infect. 2015;4(1):e1.  https://doi.org/10.1038/emi.2015.1.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Estela CRL, Alejandro PR. Biofilms: a survival and resistance mechanism of microorganisms. In: Pana M, editors. Antibiotic resistant bacteria—a continuous challenge in the new millennium. InTech; 2012. ISBN: 978–953–51-0472-8.Google Scholar
  8. 8.
    Donlan RM. Role of biofilms in antimicrobial resistance. ASAIO J. 2000;46(6):S47–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Du J, Bandara H, Du P, Huang H, Hoang K, Nguyen D, et al. Improved biofilm antimicrobial activity of polyethylene glycol conjugated tobramycin compared to tobramycin in Pseudomonas aeruginosa biofilms. Mol Pharm. 2015;12(5):1544–53.CrossRefPubMedGoogle Scholar
  11. 11.
    Hou Y, Wang Z, Zhang P, Bai H, Sun Y, Duan J, et al. Lysozyme associated liposomal gentamicin inhibits bacterial biofilm. Int J Mol Sci. 2017;18(4):784.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bjarnsholt T, Ciofu O, Molin S, Givskov M, Høiby N. Applying insights from biofilm biology to drug development—can a new approach be developed? Nat Rev Drug Discov. 2013;12(10):791–808.CrossRefPubMedGoogle Scholar
  13. 13.
    Martinelli A, Bakry A, D’Ilario L, Francolini I, Piozzi A, Taresco V. Release behavior and antibiofilm activity of usnic acid-loaded carboxylated poly (l-lactide) microparticles. Eur J Pharm Biopharm. 2014;88(2):415–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Murillo O, Domenech A, Garcia A, Tubau F, Cabellos C, Gudiol F, et al. Efficacy of high doses of levofloxacin in experimental foreign-body infection by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50(12):4011–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Penta J, Jannu KK, Musthyala R. Antimicrobial studies of selected antibiotics and their combination with enzymes. Int J Pharm Pharm Sci. 2010;2(3):43–4.Google Scholar
  16. 16.
    Sakharkar MK, Jayaraman P, Soe WM, Chow V, Sing LC, Sakharkar KR. In vitro combinations of antibiotics and phytochemicals against Pseudomonas aeruginosa. J Microbiol Immunol Infect. 2009;42(5):364–70.PubMedGoogle Scholar
  17. 17.
    Van Vuuren S, Suliman S, Viljoen A. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol. 2009;48(4):440–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Venkataraman M, Nagarsenker M. Silver sulfadiazine nanosystems for burn therapy. AAPS PharmSciTech. 2013;14(1):254–64.CrossRefPubMedGoogle Scholar
  19. 19.
    Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB® combination. J Antimicrob Chemother. 2009;64(1):88–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Seifeldeen DW. Evaluation of the combination of N-acetylcysteine and or sodium salicylate with ciprofloxacin on bacterial adhesion and biofilm formation on urinary catheters. IAJAA. 2012;2(1):1–12.CrossRefGoogle Scholar
  21. 21.
    Gao X, Yao G, Guo N, An F, Guo X. A simple and rapid high performance liquid chromatography method to determine levofloxacin in human plasma and its use in a bioequivalence study. Drug Discover Ther. 2007;1(2):136–40.Google Scholar
  22. 22.
    Aguilar MI. HPLC of peptides and proteins. vol. 251. New York: Springer; 2004. p. 3–8.Google Scholar
  23. 23.
    Liao YH, Brown MB, Martin GP. Turbidimetric and HPLC assays for the determination of formulated lysozyme activity. J Pharm Pharmacol. 2001;53(4):549–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang X, Sun P, Bi R, Wang J, Zhang N, Huang G. Targeted delivery of levofloxacin-liposomes for the treatment of pulmonary inflammation. J Drug Target. 2009;17(5):399–407.CrossRefPubMedGoogle Scholar
  25. 25.
    Pathak P, Dhawan V, Magarkar A, Danne R, Govindarajan S, Ghosh S, et al. Design of cholesterol arabinogalactan anchored liposomes for asialoglycoprotein receptor mediated targeting to hepatocellular carcinoma: in silico modeling, in vitro and in vivo evaluation. Int J Pharm. 2016;509(1):149–58.CrossRefPubMedGoogle Scholar
  26. 26.
    MacLeod DL, Barker LM, Sutherland JL, Moss SC, Gurgel JL, Kenney TF, et al. Antibacterial activities of a fosfomycin/tobramycin combination: a novel inhaled antibiotic for bronchiectasis. J Antimicrob Chemother. 2009;64:829–36.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Marier JF, Lavigne J, Ducharme MP. Pharmacokinetics and efficacies of liposomal and conventional formulations of tobramycin after intratracheal administration in rats with pulmonary Burkholderia cepacia infection. Antimicrob Agents Chemother. 2002;46(12):3776–81.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Omri A, Beaulac C, Bouhajib M, Montplaisir S, Sharkawi M, Lagace J. Pulmonary retention of free and liposome-encapsulated tobramycin after intratracheal administration in uninfected rats and rats infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1994;38(5):1090–5.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Naikwade SR, Bajaj AN, Gurav P, Gatne MM, Soni PS. Development of budesonide microparticles using spray-drying technology for pulmonary administration: design, characterization, in vitro evaluation, and in vivo efficacy study. AAPS PharmSciTech. 2009;10(3):993–1012.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee SH, Teo J, Heng D, Ng WK, Chan HK, Tan RB. Synergistic combination dry powders for inhaled antimicrobial therapy: formulation, characterization and in vitro evaluation. Eur J Pharm Biopharm. 2013;83(2):275–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Cisani G, Varaldo PE, Grazi G, Soro O. High-level potentiation of lysostaphin anti-staphylococcal activity by lysozyme. Antimicrob Agents Chemother. 1982;21(4):531–5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chung W, Hancock RE. Action of lysozyme and nisin mixtures against lactic acid bacteria. Int J Food Microbiol. 2000;60(1):25–32.CrossRefGoogle Scholar
  34. 34.
    Pellegrini A, Thomas U, Fellenberg RV, Wild P. Bactericidal activities of lysozyme and aprotinin against Gram-negative and Gram-positive bacteria related to their basic character. J Appl Bacteriol. 1992;72(3):180–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000;44(7):1818–24.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wecke J, Lahav M, Ginsburg I, Giesbrecht P. Cell wall degradation ofStaphylococcus aureus by lysozyme. Arch Microbiol. 1982;131(2):116–23.CrossRefPubMedGoogle Scholar
  37. 37.
    Samaranayake Y, Cheung B, Parahitiyawa N, Seneviratne C, Yau J, Yeung K, et al. Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces. Arch Oral Biol. 2009;54(2):115–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc. 2014;11(3):425–34.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cipolla D, Blanchard J, Gonda I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 2016;8(1):1–31.CrossRefGoogle Scholar
  40. 40.
    Cipolla D, Gonda I, Chan H-K. Liposomal formulations for inhalation. Ther Deliv. 2013;4(8):1047–72.CrossRefPubMedGoogle Scholar
  41. 41.
    Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis. 2004;39(2):206–17.CrossRefPubMedGoogle Scholar
  42. 42.
    Feng X, Maze M, Koch LG, Britton SL, Hellman J. Exaggerated acute lung injury and impaired antibacterial defenses during Staphylococcus aureus infection in rats with the metabolic syndrome. PLoS One. 10(5):e0126906.  https://doi.org/10.1371/journal.pone.0126906.
  43. 43.
    Yao L, Berman JW, Factor SM, Lowy FD. Correlation of histopathologic and bacteriologic changes with cytokine expression in an experimental murine model of bacteremic Staphylococcus aureus infection. Infect Immun. 1997;65(9):3889–95.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Summah H, Qu J-M. Biomarkers: a definite plus in pneumonia. Mediat Inflamm. 2009;2009:1–9.CrossRefGoogle Scholar
  45. 45.
    Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–17.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Purnima V. Gupta
    • 1
  • Abhijit M. Nirwane
    • 1
    • 2
  • Mangal S. Nagarsenker
    • 1
  1. 1.Department of PharmaceuticsBombay College of PharmacyMumbaiIndia
  2. 2.College of PharmacyUniversity of MinnesotaDuluthUSA

Personalised recommendations