Development of Itraconazole Tablets Containing Viscous KinetiSol Solid Dispersions: In Vitro and In Vivo Analysis in Dogs

Abstract

The formulation factors relevant to developing immediate and controlled release dosage forms containing poorly soluble drugs dispersed in amorphous systems are poorly understood. While the utility of amorphous solid dispersions is becoming apparent in the pharmaceutical marketplace, literature reports tend to concentrate on the development of solid dispersion particulates, which then must be formulated into a tablet. Amorphous solid dispersions of itraconazole in high molecular weight hydroxypropyl methylcellulose were prepared by KinetiSol® Dispersing and tablets were formulated to immediately disintegrate or control the release of itraconazole. Formulated tablets were evaluated by two non-sink dissolution methodologies and the dosage form properties that controlled the gelling tendency of the dispersion carrier, hydroxypropyl methylcellulose, were investigated. Selected formulations were evaluated in an exploratory beagle dog pharmacokinetic study; the results of which indicate potential for a prolonged absorption phase relative to the commercially extruded control.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302. https://doi.org/10.1002/jps.2600600902.

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Sekiguchi K, Obi N, Ueda Y. Studies on absorption of eutectic mixture. II. Absorption of fused conglomerates of chloramphenicol and urea in rabbits. Chem Pharm Bull (Tokyo). 1964;12(2):134–44.

    Article  CAS  Google Scholar 

  3. 3.

    Keseru GM, Makara GM. The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov. 2009;8(3):203–12. http://www.nature.com/nrd/journal/v8/n3/suppinfo/nrd2796_S1.html

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Alonzo DE, Gao Y, Zhou D, Mo H, Zhang GGZ, Taylor LS. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci. 2011;100(8):3316–31. https://doi.org/10.1002/jps.22579.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61(12):1571–86. https://doi.org/10.1211/jpp.61.12.0001.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):e79–85. https://doi.org/10.1016/j.ddtec.2011.10.002.

    Article  Google Scholar 

  7. 7.

    Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19. https://doi.org/10.1021/mp8000793.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Repka MA, Majumdar S, Kumar Battu S, Srirangam R, Upadhye SB. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008;5(12):1357–76. https://doi.org/10.1517/17425240802583421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Hughey J, DiNunzio J, Bennett R, Brough C, Miller D, Ma H, et al. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2010;11(2):760–74. https://doi.org/10.1208/s12249-010-9431-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    DiNunzio JC, Brough C, Miller DA, Williams RO, McGinity JW. Fusion processing of itraconazole solid dispersions by KinetiSol® dispersing: a comparative study to hot-melt extrusion. J Pharm Sci. 2010;99(3):1239–53. https://doi.org/10.1002/jps.21893.

  11. 11.

    DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams Iii RO, McGinity JW. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot-melt extrusion and KinetiSol® dispersing. Eur J Pharm Biopharm. 2010;74(2):340–51. https://doi.org/10.1016/j.ejpb.2009.09.007.

  12. 12.

    Hughey JR, Keen JM, Miller DA, Brough C, McGinity JW. Preparation of viscous solid dispersion systems by hot-melt extrusion and KinetiSol® dispersing: polymer screening and thermal stability. Int J Pharm. 2012;438:11–9.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Hughey JR, Keen JM, Brough C, Saeger S, McGinity JW. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® dispersing. Int J Pharm. 2011;419(1–2):222–30. https://doi.org/10.1016/j.ijpharm.2011.08.007.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Broadhead J, Edmond Rouan SK, Rhodes CT. The spray drying of pharmaceuticals. Drug Dev Ind Pharm. 1992;18(11–12):1169–206. https://doi.org/10.3109/03639049209046327.

    Article  CAS  Google Scholar 

  15. 15.

    Kolter K, Karl M, Nalawade S, Rottmann N. Hot-melt extrusion with BASF pharma polymers: extrusion compendium. In: BASF, editor. Ludwigshafen, Germany;2010.

  16. 16.

    Yoo S, Kang E, Shin B, Jun H, Lee S-H, Lee K, et al. Interspecies comparison of the oral absorption of itraconazole in laboratory animals. Arch Pharm Res. 2002;25(3):387–91. https://doi.org/10.1007/bf02976644.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Miller D, DiNunzio J, Yang W, McGinity J, Williams R. Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption. Pharm Res. 2008;25(6):1450–9. https://doi.org/10.1007/s11095-008-9543-1.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    DiNunzio JC, Miller DA, Yang W, McGinity JW, Williams RO. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm. 2008;5(6):968–80. https://doi.org/10.1021/mp800042d.

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm. 2008;69(1):223–30. https://doi.org/10.1016/j.ejpb.2007.11.006.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Vaughn JM, McConville JT, Burgess D, Peters JI, Johnston KP, Talbert RL, et al. Single dose and multiple dose studies of itraconazole nanoparticles. Eur J Pharm Biopharm. 2006;63(2):95–102. https://doi.org/10.1016/j.ejpb.2006.01.006.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Hoeben BJ, Burgess DS, McConville JT, Najvar LK, Talbert RL, Peters JI, et al. In vivo efficacy of aerosolized nanostructured itraconazole formulations for prevention of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2006;50(4):1552–4. https://doi.org/10.1128/aac.50.4.1552-1554.2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Six K, Daems T, de Hoon J, Van Hecken A, Depre M, Bouche M-P, et al. Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. Eur J Pharm Sci. 2005;24(2–3):179–86. https://doi.org/10.1016/j.ejps.2004.10.005.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Francois M, Snoeckx E, Putteman P, Wouters F, De Proost E, Delaet U, et al. A mucoadhesive, cyclodextrin-based vaginal cream formulation of itraconazole. AAPS J. 2003;5(1):50–4. https://doi.org/10.1208/ps050105.

    Article  CAS  Google Scholar 

  24. 24.

    Baert L, Verreck G, Thone D. In: States U, editor. Antifungal compositions with improved bioavailability. United States: Janssen Pharmaceutica; 2006.

    Google Scholar 

  25. 25.

    Baert L, Verreck G, Thone D. Antifungal compositions with improved bioavailability. In: States U, editor.: Janssen Pharmaceutica; 2003.

  26. 26.

    Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev Ind Pharm. 2008;34(8):890–902. https://doi.org/10.1080/03639040801929273.

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Keary CM. Characterization of METHOCEL cellulose ethers by aqueous SEC with multiple detectors. Carbohydr Polym. 2001;45(3):293–303.

    Article  CAS  Google Scholar 

  28. 28.

    Tanaka N, Imai K, Okimoto K, Ueda S, Tokunaga Y, Ibuki R, et al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J Control Release. 2006;112(1):51–6. https://doi.org/10.1016/j.jconrel.2006.01.020.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Srinarong P, Faber JH, Visser MR, Hinrichs WLJ, Frijlink HW. Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants. Eur J Pharm Biopharm. 2009;73(1):154–61. https://doi.org/10.1016/j.ejpb.2009.05.006.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Hughey JR, Keen JM, Miller DA, Kolter K, Langley N, McGinity JW. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions. Eur J Pharm Sci. 2013;48(4–5):758–66. https://doi.org/10.1016/j.ejps.2013.01.004.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Gao Y, Carr RA, Spence JK, Wang WW, Turner TM, Lipari JM, et al. A pH-dilution method for estimation of biorelevant drug solubility along the gastrointestinal tract: application to physiologically based pharmacokinetic modeling. Mol Pharm. 2010;7(5):1516–26. https://doi.org/10.1021/mp100157s.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Gibbs JH, DiMarzio EA. Nature of the glass transition and the glassy state. J Chem Phys. 1958;28(3):373–83. https://doi.org/10.1063/1.1744141.

    Article  CAS  Google Scholar 

  33. 33.

    Fox TG, Flory PJ. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys. 1950;21(6):581–91. https://doi.org/10.1063/1.1699711.

    Article  CAS  Google Scholar 

  34. 34.

    Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806. https://doi.org/10.1023/a:1016292416526.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Six K, Verreck G, Peeters J, Augustijns P, Kinget R, Van den Mooter G. Characterization of glassy itraconazole: a comparative study of its molecular mobility below Tg with that of structural analogues using MTDSC. Int J Pharm. 2001;213(1–2):163–73. https://doi.org/10.1016/S0378-5173(00)00662-1.

  36. 36.

    Berndl G, Degenhardt M, Maegerlein M, Dispersyn G. Itraconazole compositions with improved bioavailability. In: States U, editor. United States: Abbot GmbH&Co.; 2013.

  37. 37.

    Denny PJ. Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol. 2002;127(2):162–72. https://doi.org/10.1016/S0032-5910(02)00111-0.

    Article  CAS  Google Scholar 

  38. 38.

    Botzolakis JE, Augsburger LL. The role of disintegrants in hard-gelatin capsules. J Pharm Pharmacol. 1984;36(2):77–84. https://doi.org/10.1111/j.2042-7158.1984.tb02998.x.

  39. 39.

    Augsburger LL, Brzeczko AW, Shah U, Hahm HA. Super disintegrants: characterization and function. Enc Pharm Technol. 2006;3553–67.

  40. 40.

    Malamataris S, Karidas T, Goidas P. Effect of particle size and sorbed moisture on the compression behaviour of some hydroxypropyl methylcellulose (HPMC) polymers. Int J Pharm. 1994;103(3):205–15. https://doi.org/10.1016/0378-5173(94)90170-8.

    Article  CAS  Google Scholar 

  41. 41.

    Pingali K, Mendez R, Lewis D, Michniak-Kohn B, Cuitino A, Muzzio F. Mixing order of glidant and lubricant—influence on powder and tablet properties. Int J Pharm. 2011;409(1–2):269–77. https://doi.org/10.1016/j.ijpharm.2011.02.032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    Joshi SC. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials. 2011;4(10):1861–905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Conti S, Maggi L, Segale L, Ochoa Machiste E, Conte U, Grenier P, et al. Matrices containing NaCMC and HPMC: 1. Dissolution performance characterization. Int J Pharm. 2007;333(1–2):136–42. https://doi.org/10.1016/j.ijpharm.2006.11.059.

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Lee PI. Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions. Int J Pharm. 2011;418(1):18–27. https://doi.org/10.1016/j.ijpharm.2011.01.019.

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Tran P, Tran T, Park J, Lee B-J. Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res. 2011;28(10):2353–78. https://doi.org/10.1007/s11095-011-0449-y.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 1998;15(5):698–705. https://doi.org/10.1023/a:1011910801212.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Curatolo W, Nightingale J, Herbig S. Utility of Hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res. 2009;26(6):1419–31. https://doi.org/10.1007/s11095-009-9852-z.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Tho I, Liepold B, Rosenberg J, Maegerlein M, Brandl M, Fricker G. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur J Pharm Sci. 2010;40(1):25–32. https://doi.org/10.1016/j.ejps.2010.02.003.

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Zhang Y, Cremer PS. Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol. 2006;10(6):658–63. https://doi.org/10.1016/j.cbpa.2006.09.020.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Akimoto M, Nagahata N, Furuya A, Fukushima K, Higuchi S, Suwa T. Gastric pH profiles of beagle dogs and their use as an alternative to human testing. Eur J Pharm Biopharm. 2000;49(2):99–102. https://doi.org/10.1016/S0939-6411(99)00070-3.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Garren KW, Rahim S, Marsh K, Morris JB. Bioavailability of generic ritonavir and lopinavir/ritonavir tablet products in a dog model. J Pharm Sci. 2010;99(2):626–31. https://doi.org/10.1002/jps.21712.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Justin M. Keen.

Ethics declarations

Preclinical analysis was performed at Charles River Laboratories (Wilmington, MA), Institutional Animal Care and Use Committee (IACUC) approval number P06092010.

Additional information

Communicated By: Dave A. Miller

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keen, J.M., LaFountaine, J.S., Hughey, J.R. et al. Development of Itraconazole Tablets Containing Viscous KinetiSol Solid Dispersions: In Vitro and In Vivo Analysis in Dogs. AAPS PharmSciTech 19, 1998–2008 (2018). https://doi.org/10.1208/s12249-017-0903-1

Download citation

KEY WORDS

  • solubility enhancement
  • kinetisol
  • solid dispersion