Non-ionic Surfactant Based In Situ Forming Vesicles as Controlled Parenteral Delivery Systems

  • Hussein O. Ammar
  • Magdy Ibrahim
  • Azza A. Mahmoud
  • Rehab N. Shamma
  • Nada M. El Hoffy
Research Article
  • 71 Downloads

Abstract

Non-ionic surfactant (NIS) based in situ forming vesicles (ISVs) present an affordable alternative to the traditional systems for the parenteral control of drug release. In this work, NIS based ISVs encapsulating tenoxicam were prepared using the emulsion method. Tenoxicam-loaded ISVs were prepared using a 22.31 full factorial experimental design, where three factors were evaluated as independent variables; type of NIS (A), molar ratio of NIS to Tween®80 (B), and phase ratio of the internal ethyl acetate to the external Captex® oil phase (C). Percentage drug released after 1 h, particle size of the obtained vesicles and mean dissolution time were chosen as the dependent variables. Selected formulation was subjected to morphological investigation, injectability, viscosity measurements, and solid state characterization. Optimum formulation showed spherical nano-vesicles in the size of 379.08 nm with an initial drug release of 37.32% in the first hour followed by a sustained drug release pattern for 6 days. DSC analysis of the optimized formulation confirmed the presence of the drug in an amorphous form with the nano-vesicles. Biological evaluation of the selected formulation was performed on New Zealand rabbits by IM injection. The prepared ISVs exhibited a 45- and 28-fold larger AUC and MRT values, respectively, compared to those of the drug suspension. The obtained findings boost the use of ISVs for the treatment of many chronic inflammatory conditions.

KEY WORDS

in situ forming vesicles non-ionic surfactants intramuscular emulsion anti-inflammatory 

Notes

Compliance with Ethical Standards

All animal procedures were performed according to the protocols reviewed and approved by the Research Ethics Committee of Faculty of Pharmacy, Cairo University.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12249_2017_897_Fig6_ESM.gif (216 kb)
ESM 1

(GIF 216 kb)

12249_2017_897_MOESM1_ESM.tif (257 kb)
High Resolution Image (TIFF 256 kb)

References

  1. 1.
    Luan X. Biodegradable microparticle and in situ microparticle systems. Berlin: Freie Universität; 2006.Google Scholar
  2. 2.
    Graham NB. Polymeric inserts and implants for the controlled release of drugs. Brit Polym J. 1978;10(4):260–6.CrossRefGoogle Scholar
  3. 3.
    Sankar V, Ruckmani K, Durga S, Jailani S. Proniosomes as drug carriers. Pak J Pharm Sci. 2010;23:103–7.PubMedGoogle Scholar
  4. 4.
    Vyas S, Singh R, Jain S, Mishra V, Mahor S, Singh P, et al. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm. 2005;296(1):80–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Hiruta Y, Hattori Y, Kawano K, Obata Y, Maitani Y. Novel ultra-deformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin. J Control Release. 2006;113(2):146–54.CrossRefPubMedGoogle Scholar
  6. 6.
    Negi LM, Garg AK, Chauhan M. Ultradeformable vesicles: concept and execution. Pharma Times. 2009;41(9):11–4.Google Scholar
  7. 7.
    Sankar V, Ruckmani K, Jailani S, Ganesan KS, Sharavanan S. Niosome drug delivery system: advances and medical applications an overview. Pharmacol Online. 2009;2:926–32.Google Scholar
  8. 8.
    Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B. 2011;1(4):208–19.CrossRefGoogle Scholar
  9. 9.
    Kushwaha SK, Keshari RK, Rai A. Advances in nasal trans-mucosal drug delivery. J Appl Pharm Sci. 2011;1(7):21–8.Google Scholar
  10. 10.
    Packhaeuser C, Schnieders J, Oster C, Kissel T. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm. 2004;58(2):445–55.CrossRefPubMedGoogle Scholar
  11. 11.
    Turino LN, Mariano RN, Mengatto LN, Luna JA. In vitro evaluation of suspoemulsions for in situ-forming polymeric microspheres and controlled release of progesterone. J Microencapsul. 2015;32(6):538–46.  https://doi.org/10.3109/02652048.2015.1065914.CrossRefPubMedGoogle Scholar
  12. 12.
    Turino L, Mariano R, Boimvaser S, Luna J. In situ-formed microparticles of PLGA from O/W emulsions stabilized with PVA: encapsulation and controlled release of progesterone. J Pharm Innov. 2014;9(2):132–40.CrossRefGoogle Scholar
  13. 13.
    Yehia SA, Abdel-Halim SA, Aziz MY. Formulation and evaluation of injectable in situ forming microparticles for sustained delivery of lornoxicam. Drug Dev Ind Pharm. 2017;43(2):319–28.  https://doi.org/10.1080/03639045.2016.1241259.CrossRefPubMedGoogle Scholar
  14. 14.
    Uchegbu IF, Schatzlein A, Vanlerberghe G, Morgatini N, Florence AT. Polyhedral non-ionic surfactant vesicles. J Pharm Pharmacol. 1997;49(6):606–10.CrossRefPubMedGoogle Scholar
  15. 15.
    Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interf Sci. 1995;58:1–55.CrossRefGoogle Scholar
  16. 16.
    Bouwstra JA, Van HD, Hofland HE. Preparation and characterization of nonionic surfactant vesicles. Colloids Surf A Physicochem Eng Asp. 1997;80:123–4.Google Scholar
  17. 17.
    Rangasamy M, Ayyasamy B, Raju S, Develly SG, Shaik S. Formulation and in vitro evaluation of noisome encapsulated acyclovir. J Pharm Res. 2008;1:163–6.Google Scholar
  18. 18.
    Bhaskaran S, Lakshmi PK. Comparative evaluation of niosome formulations prepared by different techniques. Acta Pharm Sci. 2009;51:27–32.Google Scholar
  19. 19.
    Wadhe K, Kalsait R, Umekar M. Alternate drug delivery system: recent advancement and future challenges. Arch Pharm Sci Res. 2009;1:97–105.Google Scholar
  20. 20.
    Bajaj A, Desai M. Challenges and strategies in novel drug delivery technologies. Pharm Times. 2006;38:6–12.Google Scholar
  21. 21.
    Hofland HE, Bouwstra JA, Verhoef JC, Buckton G, Chowdry BZ, Ponec M, et al. Safety aspects of non-ionic surfactant vesicles: a toxicity study related to the physicochemical characteristics of non-ionic surfactants. J Pharm Pharmacol. 1992;44(4):287–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Bird H, Hill J, Lowe J, Wright V. A double-blind comparison of tenoxicam (Tilcotil, Mobiflex) at two doses against ibuprofen in rheumatoid arthritis. Eur J Rheumatol Inflamm. 1983;7(2):28–32.Google Scholar
  23. 23.
    Woolf TF, Radulovic LL. Oxicams: metabolic disposition in man and animals. Drug Metab Rev. 1989;21(2):255–76.CrossRefPubMedGoogle Scholar
  24. 24.
    Morof O, Herrmann T, Roth M, editors. Effect of tenoxicam and two of its main metabolites—5′-OH tenoxicam and 6 ″-OH tenoxicam—on prostaglandin H synthase and release of leukotriene B4 from human PMNLs. Manila: Sixth South East Asia and Pacific League against Rheumatism Congress of Rheumatology; 1988.Google Scholar
  25. 25.
    Todd PA, Clissold SP. Tenoxicam. Drugs. 1991;41(4):625–46.CrossRefPubMedGoogle Scholar
  26. 26.
    Gonzales J, Todd P. Tenoxicam. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy. Drugs. 1987;34:289–310.CrossRefGoogle Scholar
  27. 27.
    Brittain HG. Analytical profiles of drug substances and excipients. Cambridge: Academic Press; 1994.Google Scholar
  28. 28.
    Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290(1):155–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Lee PI. Novel approach to zero-order drug delivery via immobilized nonuniform drug distribution in glassy hydrogels. J Pharm Sci. 1984;73(10):1344–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Korsmeyer R, Gurny R, Doelker E, Buri P, Peppas N. Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci. 1983;72(10):1189–91.CrossRefPubMedGoogle Scholar
  32. 32.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.CrossRefGoogle Scholar
  33. 33.
    Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1.PubMedGoogle Scholar
  34. 34.
    Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Control Release. 2004;98(3):427–36.CrossRefPubMedGoogle Scholar
  35. 35.
    Shamma RN, Elkasabgy NA, Mahmoud AA, Gawdat SI, Kataia MM, Abdel Hamid MA. Design of novel injectable in-situ forming scaffolds for non-surgical treatment of periapical lesions: in-vitro and in-vivo evaluation. Int J Pharm. 2017;521(1–2):306–17.  https://doi.org/10.1016/j.ijpharm.2017.02.058.CrossRefPubMedGoogle Scholar
  36. 36.
    Leroux L, Hatim Z, Freche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone. 25(2 Suppl):31S–4S.Google Scholar
  37. 37.
    Leroux JC, Cozens R, Roesel JL, Galli B, Kubel F, Doelker E, et al. Pharmacokinetics of a novel HIV-1 protease inhibitor incorporated into biodegradable or enteric nanoparticles following intravenous and oral administration to mice. J Pharm Sci. 1995;84(12):1387–91.CrossRefPubMedGoogle Scholar
  38. 38.
    Smaby N, Johanson ME, Baker B, Kenney DE, Murray WM, Hentz VR. Identification of key pinch forces required to complete functional tasks. J Rehabil Res Dev. 2004;41(2):215–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Paul S, Egbert JE, Walsh AW, Hoey MF. Pressure measurements during injection of corticosteroids. Med Biol Eng Comput. 1998;36(6):729–33.CrossRefPubMedGoogle Scholar
  40. 40.
    U.S. Food and Drug Administration. Inactive ingredient search for approved drug products: ethyl acetate. 2017 [cited 2017 August]; Available from: https://www.accessdata.fda.gov/scripts/cder/iig/getiigWEB.cfm.
  41. 41.
    Rungseevijitprapa W, Bodmeier R. Injectability of biodegradable in situ forming microparticle systems (ISM). Eur J Pharm Sci. 2009;36(4):524–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Ahmed TA, Ibrahim HM, Khalifa S, Samy AM, Kaseem A, Nutan MT, et al. Controlled release of haloperidol from biodegradable injectable in situ implant and microparticle formulations. AAPS J. 12(77):S2.Google Scholar
  43. 43.
    Tice TR, Staas JK, Ferrell TM, Markland P. Injectable buprenorphine microparticle compositions and their use. Google Patents; 2008.Google Scholar
  44. 44.
    Lagarce F, Renaud P, Faisant N, Nicolas G, Cailleux A, Richard J, et al. Baclofen-loaded microspheres: preparation and efficacy testing in a new rabbit model. Eur J Pharm Biopharm. 2005;59(3):449–59.  https://doi.org/10.1016/j.ejpb.2004.08.013.CrossRefPubMedGoogle Scholar
  45. 45.
    Yapar EA, İnal Ö, Özkan Y, Baykara T. Injectable in situ forming microparticles: a novel drug delivery system. Trop J Pharm Res. 11(2):307–18.Google Scholar
  46. 46.
    Yoshioka T, Sternberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm. 1994;105(1):1–6.CrossRefGoogle Scholar
  47. 47.
    van den Bergh BA, Wertz PW, Junginger HE, Bouwstra JA. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. Int J Pharm. 2001;217(1):13–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Ijeoma FU, Suresh PV. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1–2):33–70.Google Scholar
  49. 49.
    Hallinan DT Jr, De Angelis MG, Giacinti Baschetti M, Sarti GC, Elabd YA. Non-Fickian diffusion of water in Nafion. Macromolecules. 2010;43(10):4667–78.CrossRefGoogle Scholar
  50. 50.
    Ibrahim MA. Tenoxicam-Kollicoat IR® binary systems: physicochemical and biological evaluation. Acta Pol Pharm. 2014;71(4):647–59.PubMedGoogle Scholar
  51. 51.
    Dong Y, Feng SS. Poly (d, l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(30):6068–76.CrossRefPubMedGoogle Scholar
  52. 52.
    Nasr M, Mansour S, Mortada ND, Elshamy A. Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. J Microencapsul. 2008;25(7):499–512.CrossRefPubMedGoogle Scholar
  53. 53.
    Benmerah A, Lamaze C. Clathrin-coated pits: Vive La Différence? Traffic. 2007;8(8):970–82.CrossRefPubMedGoogle Scholar
  54. 54.
    Salama HA, Ghorab M, Mahmoud AA, Abdel Hady M. PLGA Nanoparticles as subconjunctival injection for management of glaucoma. AAPS PharmSciTech. 2017;  https://doi.org/10.1208/s12249-017-0710-8.

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical IndustriesFuture University in EgyptNew CairoEgypt
  2. 2.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyCairo UniversityCairoEgypt
  3. 3.Department of Pharmaceutical TechnologyNational Research CenterCairoEgypt

Personalised recommendations