AAPS PharmSciTech

, Volume 19, Issue 1, pp 27–35 | Cite as

Solid-State Stability Issues of Drugs in Transdermal Patch Formulations

  • Purnendu Kumar Sharma
  • Apoorva Panda
  • Adwait Pradhan
  • Jiaxiang Zhang
  • Ruchi Thakkar
  • Chang-Hee Whang
  • Michael A. Repka
  • S. Narasimha MurthyEmail author
Mini-Review Theme: Stability of Pharmaceutical Excipients
Part of the following topical collections:
  1. Theme: Stability of Pharmaceutical Excipients


The transdermal patch formulation has many advantages, including noninvasiveness, an ability to bypass the first-pass metabolism, low dosage requirements, and prolonged drug delivery. However, the instability of solid-state drugs is one of the most critical problems observed in transdermal patch products. Therefore, a well-characterized approach for counteracting stability problems in solid-state drugs is crucial for improving the performance of transdermal patch products. This review provides insight into the solid-state stability of drugs associated with transdermal patch products and offers a comprehensive update on the various approaches being used for improving the stability of the active pharmaceutical ingredients currently being used.


crystallization transdermal patches precipitation instability physical 


  1. 1.
    Newman AW, Byrn SR. Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discov Today. 2003;8(19):898–905.CrossRefPubMedGoogle Scholar
  2. 2.
    Padula C, Nicoli S, Aversa V, Colombo P, Falson F, Pirot F, et al. Bioadhesive film for dermal and transdermal drug delivery. Eur J Dermatol. 2007;17(4):309–12.PubMedGoogle Scholar
  3. 3.
    U.S. Food and Drug Administration. Enforcement Report for May 14, 2008. U.S. Food and Drug Administration, 30 APR 2009. Web. 4 NOV 2012. 2012 [cited 2016 October 30]; Available from:
  4. 4.
    U.S. Food and Drug Administration. Enforcement Report for June 6, 2012. U.S. Food and Drug Administration, 07 JUN 2012. Web. 4 NOV 2012. [cited 2016 October 30]; Available from:
  5. 5.
    Jain P, Banga AK. Inhibition of crystallization in drug-in-adhesive-type transdermal patches. Int J Pharm. 2010;394:68–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Chaudhuri KR. Crystallisation within transdermal rotigotine patch: is there cause for concern. Expert Opin Drug Deliv. 2008;5(11):1169–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 2006;13(3):175–87.CrossRefPubMedGoogle Scholar
  8. 8.
    Roy BN, editor. Crystal growth from melts: applications to growth of groups 1 and 2 crystals. John Wiley & Sons Incorporated; 1992.Google Scholar
  9. 9.
    Mullin JW. Crystallization. 4th ed. Burlington: Elsevier Butterworth-Heinemann; 2001.Google Scholar
  10. 10.
    Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97(4):1329–49.CrossRefPubMedGoogle Scholar
  11. 11.
    Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7(12):1103–12.CrossRefGoogle Scholar
  12. 12.
    Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.CrossRefGoogle Scholar
  13. 13.
    Johari GP, Kim S, Shanker RM. Dielectric relaxation and crystallization of ultraviscous melt and glassy states of aspirin, ibuprofen, progesterone, and quinidine. J Pharm Sci. 2007;96(5):1159–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Lipp R, Mu¨ller-Fahrnow A. Use of X-ray crystallography for the characterization of single crystals grown in steroid containing transdermal drug delivery systems, Eur J Pharm Biopharm.1999;4:133–38.Google Scholar
  15. 15.
    Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Adv Drug Deliv Rev. 2004;56(3):335–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim JH, Choi HK. Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix. Int J Pharm. 2002;236:81–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212:213–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Doherty C, York P. Evidence for solid-state and liquid-state interactions in a furosemide polyvinylpyrrolidone solid dispersion. J Pharm Sci. 1987;76:731–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Balasubramanium A, Sharma PK. Official Journal of the Patent Office-India, 2656/MUM/2012 A, A61K9/00. Issue no: 40/2012, Page no-16505.Google Scholar
  21. 21.
    Stefano FJE, Biali FI, Scasso AF. Crystallization in NETA-17P-E2 Proc. Int Symp Contr Rel Bioact Mater. 1997;24: 703–4.Google Scholar
  22. 22.
    Lipp R, Miiller-Fahmow A. X-ray structure determinations of crystals grown in transdermal delivery systems containing estradiol or gestodene. Pharm Res. 1994;11:S-213.CrossRefGoogle Scholar
  23. 23.
    Barry BW. Dermatological Formulations. New York: Marcel Dekker; 1983.Google Scholar
  24. 24.
    Caning T, Theniault D. Transdermal hormone replacement adhesives. Roc Int Symp Contr Rel Bioact Mater. 1997;24:891–2.Google Scholar
  25. 25.
    Lipp R. Selection and use of crystallization inhibitors for matrix-type transdermal drug-delivery systems containing sex steroids. J Pharm Pharmacol. 1998;50:1343–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Sachdeva V, Baia Y, Kydonieusb A, Bangaa AK. Formulation and optimization of desogestrel transdermal contraceptive patch using crystallization studies. Int J Pharm. 2013;441:9–18.CrossRefPubMedGoogle Scholar
  27. 27.
    Rodríguez-Spong B, Price CP, Jayasankar A, Matzger AJ, Rodríguez-Hornedo N. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv Drug Deliv Rev. 2004;56(3):241–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Nangia A, Row TG. Polymorphism. CrystEngComm. 2015;17(28):5128–8.Google Scholar
  29. 29.
    Kitamura M. Strategy for control of crystallization of polymorphs. CrystEngComm. 2009;11:949–64.CrossRefGoogle Scholar
  30. 30.
    Kitamura M. Controlling factors and mechanism of polymorphic crystallization. Cryst Growth Des. 2004;4:1153–9.CrossRefGoogle Scholar
  31. 31.
    Garg RK, Sarkar D. Polymorphism control of p-aminobenzoic acid by isothermal anti-solvent crystallization. J Cryst Growth. 2016;454:180–5.CrossRefGoogle Scholar
  32. 32.
    Subedia RK, Ryoob J-P, Moonb C, Choia H-K. Influence of formulation variables in transdermal drug delivery system containing zolmitriptan. Int J Pharm. 2011;419:209–14.CrossRefGoogle Scholar
  33. 33.
    Lakshman JP, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble. Mol Pharm. 2008;5(6):994–1002.CrossRefPubMedGoogle Scholar
  34. 34.
    Cilurzo F, Minghetti P. Adehsive properties: a critical issue in transdermal patch development. Expert Opin Drug Deliv. 2012;9:33–45.Google Scholar
  35. 35.
    Wolff HM. Safety and quality of transdermal drug delivery Systems, 4th annual drug delivery & formulation summit (WTG) berlin, 18th–20th February 2013.Google Scholar
  36. 36.
    Banov D, inventor. Use of heptyl glucoside as skin penetration enhancer in transdermal pharmaceutical compositions. United States patent application US 14/682,419. 2015 Apr 9.Google Scholar
  37. 37.
    Ravula R, Herwadkar AK, Abla MJ, Little J, Banga AK. Formulation optimization of a drug in adhesive transdermal analgesic patch. Drug Dev Ind Pharm. 2016;42(6):862–70.CrossRefGoogle Scholar
  38. 38.
    Arora P, Mukherjee B. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt. J Pharm Sci. 2002;91(9):2076–89.CrossRefPubMedGoogle Scholar
  39. 39.
    Weng W, Quan P, Liu C, Zhao H, Liang F. Design of a Drug-in-Adhesive Transdermal Patch for risperidone: effect of drug-additive interactions on the crystallization inhibition and in vitro/in vivo correlation study. J Pharm Sci. 2016;105(10):3153–61.CrossRefPubMedGoogle Scholar
  40. 40.
    Ruiz JL, Rodríguez JH, Comas MD, Masip IM, inventors; Laboratorios Salvat, SA, assignee. Stable crystalline salt of (R)-3-fluorophenyl-3, 4, 5-trifluorobenzylcarbamic acid 1-azabicyclo [2.2. 2] oct-3-yl ester. United States patent US 8,871,787. 2014 Oct 28.Google Scholar
  41. 41.
    Shende C, Smith W, Brouillette C, Farquharson S. Drug stability analysis by Raman spectroscopy. Pharmaceutics. 2014;6(4):651–62.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Latsch S, Selzer T, Fink L, Kreuter J. Crystallisation of estradiol containing TDDS determined by isothermal microcalorimetry, X-ray diffraction, and optical microscopy. Eur J Pharm Biopharm. 2003;56(1):43–52.CrossRefPubMedGoogle Scholar
  43. 43.
    Lloyd GR, Craig DQ, Smith A. An investigation into the production of paracetamol solid dispersions in PEG 4000 using hot stage differential interference contrast microscopy. Int J Pharm. 1997;158(1):39–46.CrossRefGoogle Scholar
  44. 44.
    Coleman NJ, Craig DQM. Modulated temperature differential scanning calorimetry: a novel approach to pharmaceutical thermal analysis. Int J Pharm. 1996;135:13–29.CrossRefGoogle Scholar
  45. 45.
    Ivanisevic I, McClurg RB, Schields PJ. Uses of X ray powder diffraction in the pharmaceutical industry. In: Gad SC, editor. Pharmaceutical sciences encyclopedia: drug discovery, development, and manufacturing. New Jersey: John Wiley & Sons, Inc.; 2010. p. 1–42.Google Scholar
  46. 46.
    Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G. Characterization of amorphous API: polymer mixtures using X-ray powder diffraction. J Pharm Sci. 2008;97:4840–56.CrossRefPubMedGoogle Scholar
  47. 47.
    Laggner P, Kriechbaum M, Rappolt M, Pabst G, Amenitsch H, Johs A, et al. Pharmaceutical solid-state characterization by small- and wide-angle X-ray scattering. In: Zakrzewski AM, editor. Solid state characterization of pharmaceuticals. Danbury: Assa International; 2005. p. 407–48.Google Scholar
  48. 48.
    Mills S. Pharmaceutical excipients—an overview including considerations for pediatric dosing. International Pharmaceutical Federation, World Health Organization. 21, June, 2010.Google Scholar
  49. 49.
    Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95:2692–705.CrossRefPubMedGoogle Scholar
  50. 50.
    Rumondor ACF, Wikstrom H, Van Eerdenbrugh B, Taylor LS. Understanding the tendency of amorphous solid dispersions to undergo amorphous-amorphous phase separation in the presence of absorbed moisture. AAPS PharmSciTech. 2011;12:1209–19.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yoo S-u, et al. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci. 2009;98(12):4711–23.CrossRefPubMedGoogle Scholar
  52. 52.
    Sakamoto T, Fujimaki Y, Takada Y, Aida K, Terahara T, Kawanishi T, et al. Non-destructive analysis of tulobuterol crystal reservoir-type transdermal tapes using near infrared spectroscopy and imaging. J Pharm Biomed Anal. 2013;74:14–21.CrossRefPubMedGoogle Scholar
  53. 53.
    Diehl B, Grout B. NIR spectroscopy—just one of many analytical tools for PAT. Am Pharm Rev. 2011;14:70–4.Google Scholar
  54. 54.
    Coates PD, et al. In-process vibrational spectroscopy and ultrasound measurements in polymer melt extrusion. Polymer. 2003;44(19):5937–49.CrossRefGoogle Scholar
  55. 55.
    Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kotiyan PN, Vavia PR. Eudragits: role as crystallization inhibitors in drug in-adhesive transdermal systems of estradiol. Eur J Pharm Biopharm. 2001;52:173–80.CrossRefPubMedGoogle Scholar
  57. 57.
    Newman A, Wenslow R. Solid form changes during drug development: good, bad, and ugly case studies. AAPS Open. 2016;2(1):1.CrossRefGoogle Scholar
  58. 58.
    Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016.Google Scholar
  59. 59.
    Park E-S, Yu C, Yun B-J, Ko I-J, Chi S-C. Transdermal delivery of piroxicam using microemulsions. Arch Pharm Res. 2005;28(2):243–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Bruce C, et al. Crystal growth formation in melt extrudates. Int J Pharm. 2007;341(1–2):162–72.CrossRefPubMedGoogle Scholar
  61. 61.
    Brittain HG. Methods for the characterization of polymorphs and solvates. In: Brittain HG, editor. Polymorphism in pharmaceutical solids. New York: Marcel Dekker; 1999. p. 227–78.Google Scholar
  62. 62.
    Imani M, Lahooti-Fard F, Taghizadeh S, Mitra Takrousta. Effect of adhesive layer thickness and drug loading on estradiol crystallization in a transdermal drug delivery system, AAPS Pharm Sci Tech. 2010;11(3).Google Scholar
  63. 63.
    Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64:396–421.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Purnendu Kumar Sharma
    • 1
  • Apoorva Panda
    • 1
  • Adwait Pradhan
    • 1
  • Jiaxiang Zhang
    • 1
  • Ruchi Thakkar
    • 1
  • Chang-Hee Whang
    • 1
  • Michael A. Repka
    • 1
  • S. Narasimha Murthy
    • 1
    • 2
    Email author
  1. 1.Department of Pharmaceutics and Drug DeliveryThe University of MississippiUniversityUSA
  2. 2.Institute for Drug Delivery and Biomedical ResearchBangaloreIndia

Personalised recommendations