AAPS PharmSciTech

, Volume 19, Issue 1, pp 12–26 | Cite as

Excipient Stability in Oral Solid Dosage Forms: A Review

  • Mittal A. Darji
  • Rahul M. Lalge
  • Sushrut P. Marathe
  • Tarul D. Mulay
  • Tasnim Fatima
  • Alia Alshammari
  • Hyung Kyung Lee
  • Michael A Repka
  • S. Narasimha MurthyEmail author
Mini-Review Theme: Stability of Pharmaceutical Excipients
Part of the following topical collections:
  1. Theme: Stability of Pharmaceutical Excipients


The choice of excipients constitutes a major part of preformulation and formulation studies during the preparation of pharmaceutical dosage forms. The physical, mechanical, and chemical properties of excipients affect various formulation parameters, such as disintegration, dissolution, and shelf life, and significantly influence the final product. Therefore, several studies have been performed to evaluate the effect of drug-excipient interactions on the overall formulation. This article reviews the information available on the physical and chemical instabilities of excipients and their incompatibilities with the active pharmaceutical ingredient in solid oral dosage forms, during various drug-manufacturing processes. The impact of these interactions on the drug formulation process has been discussed in detail. Examples of various excipients used in solid oral dosage forms have been included to elaborate on different drug-excipient interactions.


drug-excipient interactions solid dosage form excipient stability chemical incompatibility oxidative degradation 


  1. 1.
    Blecher L. Excipients—the important components. Pharm Process. 1995;12(1):6–7.Google Scholar
  2. 2.
    Russell R. Synthetic excipients challenge all-natural organics: offer advantages/challenges to developers and formulators. Pharm Technol. 2004;28(4):38–50.Google Scholar
  3. 3.
    Chaudhari SP, Patil PS. Pharmaceutical excipients: a review. Int J Adv Pharm Biol Chem. 2012;1:21–34.Google Scholar
  4. 4.
    Lachman L, Liebermann HA, Kanig JL, editors. The theory and practice of industrial pharmacy. 3rd ed. Philadelphia: Lea & Febiger; 1986. p. 902.Google Scholar
  5. 5.
    Zhou D. Understanding physicochemical properties for pharmaceutical product development and manufacturing II: physical and chemical stability and excipient compatibility. J Valid Technol. 2009;15(3):36.Google Scholar
  6. 6.
    Kaushal AM, Vangala VR, Suryanarayanan R. Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate. J Pharm Sci. 2011;100(4):1456–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Ehler KF, Bernhard RA, Nickerson TA. Heats of adsorption of small molecules on various forms of lactose, sucrose, and glucose. J Agric Food Chem. 1979;27(5):921–7.CrossRefGoogle Scholar
  8. 8.
    Fäldt P, Bergenståhl B. Changes in surface composition of spray-dried food powders due to lactose crystallization. LWT - Food Sci Technol. 1996;29(5–6):438–46.CrossRefGoogle Scholar
  9. 9.
    Mura P. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm. 1995;119(1):71–9.CrossRefGoogle Scholar
  10. 10.
    Eyjolfsson R. Lisinopril-lactose incompatibility. Drug Dev Ind Pharm. 1998;24(8):797–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Botha SA, Lötter AP. Compatiblity study between oxprenolol hydrochloride, temazepam and tablet excipients using differential scanning calorimetry. Drug Dev Ind Pharm. 1990;16(2):331–45.CrossRefGoogle Scholar
  12. 12.
    Rowe RC, Sheskey PJ, Owen SC, American Pharmacists Association, editors. Handbook of pharmaceutical excipients /: edited by Raymond C. Rowe, Paul J. Sheskey, Marian E. Quinn. 6th ed. Chicago, APhA/Pharmaceutical Press; 2009. p. 888.Google Scholar
  13. 13.
    Zhang J, Lu F, Yu W, Lu R, Xu J. Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst. Chin J Catal. 2016;37(1):177–83.CrossRefGoogle Scholar
  14. 14.
    Laroque D, Inisan C, Berger C, Vouland É, Dufossé L, Guérard F. Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chem. 2008;111(4):1032–42.CrossRefGoogle Scholar
  15. 15.
    Daraghmeh N, Rashid I, Al Omari MMH, Leharne SA, Chowdhry BZ, Badwan A. Preparation and characterization of a novel co-processed excipient of chitin and crystalline Mannitol. AAPS PharmSciTech. 2010;11(4):1558–71.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lesse T, Zhao D-C. Interactions between drug substances and excipients. 1. Fluorescence and HPLC studies of Triazolophthalazine derivatives from hydralazine hydrochloride and starch†† presented at the PharmAnalysis conference ‘95, Atlantic City, NJ, June 1995. J Pharm Sci. 1996;85(3):326–9.CrossRefGoogle Scholar
  17. 17.
    Desai DS, Rubitski BA, Bergum JS, Varia SA. Effects of different types of lactose and disintegrant on dissolution stability of hydrochlorothiazide capsule formulations. Int J Pharm. 1994;110(3):257–65.CrossRefGoogle Scholar
  18. 18.
    Al-Nimry SS, Assaf SM, Jalal IM, Najib NM. Adsorption of ketotifen onto some pharmaceutical excipients. Int J Pharm. 1997;149(1):115–21.CrossRefGoogle Scholar
  19. 19.
    Zografi G, Kontny MJ. The interactions of water with cellulose-and starch-derived pharmaceutical excipients. Pharm Res. 1986;3(4):187–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Islam AM, Phillips GO, Sljivo A, Snowden MJ, Williams PA. A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocoll. 1997;11(4):493–505.CrossRefGoogle Scholar
  21. 21.
    Phillips GO, Williams PA. Handbook of hydrocolloids. Repr. Boca Raton, Fla.: CRC Press [u.a.]; 2005. p. 450. (Woodhead publishing in food science and technology)Google Scholar
  22. 22.
    Balaghi S, Mohammadifar MA, Zargaraan A. Physicochemical and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Biophys. 2010;5(1):59–71.CrossRefGoogle Scholar
  23. 23.
    Anderson DMW, Bridgeman MME. The composition of the proteinaceous polysaccharides exuded by Astragalus microcephalus, A. Gummifer and A. Kurdicus—the sources of turkish gum tragacanth. Phytochemistry. 1985;24(10):2301–4.CrossRefGoogle Scholar
  24. 24.
    López-Castejón ML, Bengoechea C, García-Morales M, Martínez I. Effect of plasticizer and storage conditions on thermomechanical properties of albumen/tragacanth based bioplastics. Food Bioprod Process. 2015;95:264–71.CrossRefGoogle Scholar
  25. 25.
    Fitzpatrick S, McCabe JF, Petts CR, Booth SW. Effect of moisture on polyvinylpyrrolidone in accelerated stability testing. Int J Pharm. 2002;246(1–2):143–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Dong Z, Choi DS. Hydroxypropyl methylcellulose acetate succinate: potential drug–excipient incompatibility. AAPS PharmSciTech. 2008;9(3):991–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Odeku OA, Akinwande BL. Effect of the mode of incorporation on the disintegrant properties of acid modified water and white yam starches. Saudi Pharm J. 2012;20(2):171–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Desai PM, Liew CV, Heng PWS. Review of disintegrants and the disintegration phenomena. J Pharm Sci. 2016;105(9):2545–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Jackson K, Young D, Pant S. Drug–excipient interactions and their affect on absorption. Pharm Sci Technol Today. 2000;3(10):336–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Mohamed MB, Talari MK, Tripathy M, Majeed ABA. Pharmaceutical applications of crospovidone: a review. Int J Drug Form Res. 2012;3:13–28.Google Scholar
  31. 31.
    Balasubramaniam J, Bindu K, Rao VU, Ray D, Haldar R, Brzeczko AW. Effect of superdisintegrants on dissolution of cationic drugs. Dissolution Technol. 2008;15(2):18–25.CrossRefGoogle Scholar
  32. 32.
    Bindra DS, Stein D, Pandey P, Barbour N. Incompatibility of croscarmellose sodium with alkaline excipients in a tablet formulation. Pharm Dev Technol. 2014;19(3):285–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Bühler V. Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone. Springer Science & Business Media. 2005.Google Scholar
  34. 34.
    Patel S, Kaushal AM, Bansal AK. The effect of starch paste and sodium starch glycolate on the compaction behavior of wet granulated acetaminophen formulation. J Excip Food Chem. 2011;2(3):64–72.Google Scholar
  35. 35.
    Panakanti R, Narang AS. Impact of excipient interactions on drug bioavailability from solid dosage forms. Pharm Res. 2012;29(10):2639–59.PubMedCrossRefGoogle Scholar
  36. 36.
    Jarosz PJ, Parrott EL. Effect of lubricants on tensile strengths of tablets. Drug Dev Ind Pharm. 1984;10(2):259–73.CrossRefGoogle Scholar
  37. 37.
    Miller T, York P. Pharmaceutical tablet lubrication. Int J Pharm. 1988;41(1–2):1–19.CrossRefGoogle Scholar
  38. 38.
    Schildcrout SA, Risley DS, Kleemann RL. Drug-excipient interactions of seproxetine maleate hemi-hydrate: isothermal stress methods. Drug Dev Ind Pharm. 1993;19(10):1113–30.CrossRefGoogle Scholar
  39. 39.
    Deer WA, Howie RA, Zussman J. An introduction to the rock-forming minerals, vol. Vol. 696. London: Longman; 1992.Google Scholar
  40. 40.
    Ross M. A definition for talc. Am Soc Test Mater Phila. 1984; 193.Google Scholar
  41. 41.
    Burdukova E, Becker M, Bradshaw D, Laskowski J. Presence of negative charge on the basal planes of New York talc. J Colloid Interface Sci. 2007;315(1):337–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Flament M-P, Leterme P, Bizi M, Baudet G, Gayot A. Study of talcs as antisticking agents in the production of tablets. Eur J Pharm Sci. 2002;17(4):239–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Cotton M, Wu D, Vadas E. Drug-excipient interaction study of enalapril maleate using thermal analysis and scanning electron microscopy. Int J Pharm. 1987;40(1–2):129–42.CrossRefGoogle Scholar
  44. 44.
    Devi M, Babu P. Drug-excipient interaction studies on enalapril maleate. Int J Pharm Excip. 2000;2:153–8.Google Scholar
  45. 45.
    Marshall JJ, Grand RJ. Characterization of a beta-1,4-glucan hydrolase from the snail. Comp Biochem Physiol B. 1976;53(2):231–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Ando M, Ito R, Ozeki Y, Nakayama Y, Nabeshima T. Evaluation of a novel sugar coating method for moisture protective tablets. Int J Pharm. 2007;336(2):319–28.PubMedCrossRefGoogle Scholar
  47. 47.
    Barnes CE. Chemical nature of shellac. Ind Eng Chem. 1938;30(4):449–51.CrossRefGoogle Scholar
  48. 48.
    Nath Goswami D, Prasad N, Baboo B, Kishore Kumar K, Fahim AM. Degradation of lac with storage and a simple method to check the same. Pigment Resin Technol. 2009;38(4):211–7.CrossRefGoogle Scholar
  49. 49.
    Specht F, Saugestad M, Waaler T, Müller B. The application of shellac as an acidic polymer for enteric coating. Pharm Technol. 1999;23(3):146–54.Google Scholar
  50. 50.
    Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, Nuntanid J, Luangtana-anan M. Enhanced enteric properties and stability of shellac films through composite salts formation. Eur J Pharm Biopharm. 2007;67(3):690–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Farag Y. Characterization of different shellac types and development of shellac coated dosage forms. 2010.Google Scholar
  52. 52.
    Shukla R, Cheryan M. Zein: the industrial protein from corn. Ind Crop Prod. 2001;13(3):171–92.CrossRefGoogle Scholar
  53. 53.
    Hancock BC, Dalton CR. The effect of temperature on water vapor sorption by some amorphous pharmaceutical sugars. Pharm Dev Technol. 1999;4(1):125–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Ford JL. Design and evaluation of hydroxypropyl methylcellulose matrix tablets for oral controlled release: a historical perspective. In: Hydrophilic matrix tablets for oral controlled release. Springer; 2014. p. 17–51.Google Scholar
  55. 55.
    Maggi L, Segale L, Ochoa Machiste E, Buttafava A, Faucitano A, Conte U. Chemical and physical stability of hydroxypropylmethylcellulose matrices containing diltiazem hydrochloride after gamma irradiation. J Pharm Sci. 2003;92(1):131–41.PubMedCrossRefGoogle Scholar
  56. 56.
    Lai HL, Pitt K, Craig DQM. Characterisation of the thermal properties of ethylcellulose using differential scanning and quasi-isothermal calorimetric approaches. Int J Pharm. 2010;386(1–2):178–84.PubMedCrossRefGoogle Scholar
  57. 57.
    McBurney LF. Oxidative stability of cellulose derivatives—heat stability of ethylcellulose. Ind Eng Chem. 1949;41(6):1251–6.CrossRefGoogle Scholar
  58. 58.
    Evans EF, McBurney LF. Ultraviolet light stability of ethylcellulose. Ind Eng Chem. 1949;41(6):1256–60.CrossRefGoogle Scholar
  59. 59.
    TENG OK. Influence of additives on ethylcellulose coatings. 2006.Google Scholar
  60. 60.
    Bharate SS, Bharate SB, Bajaj AN. Incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1(3):3–26.Google Scholar
  61. 61.
    Sarisuta N, Lawanprasert P, Puttipipatkhachorn S, Srikummoon K. The influence of drug-excipient and drug-polymer interactions on butt adhesive strength of ranitidine hydrochloride film-coated tablets. Drug Dev Ind Pharm. 2006;32(4):463–71.PubMedCrossRefGoogle Scholar
  62. 62.
    Khan K, Rhodes C. Water-sorption properties of tablet disintegrants. J Pharm Sci. 1975;64(3):447–51.PubMedCrossRefGoogle Scholar
  63. 63.
    Chu P-I, Doyle D. Development and evaluation of a laboratory-scale apparatus to simulate the scale-up of a sterile semisolid and effects of manufacturing parameters on product viscosity. Pharm Dev Technol. 1999;4(4):553–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Rhodes C, Banker. A hand book of modern pharmaceutics. 4th ed.Google Scholar
  65. 65.
    Moe D, Hamed E, Hontz J, Khankari R. Binders and solvents. In: Parikh D, editor. Handbook of pharmaceutical granulation technology, Third Edition [Internet]. Informa Healthcare; 2005 [cited 2017 Apr 14]. p. 109–28. Available from:
  66. 66.
    Thakral S, Thakral NK, Majumdar DK. Eudragit®: a technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131–49.PubMedCrossRefGoogle Scholar
  67. 67.
    Bajdik J, Fehér M, Pintye-Hódi K. Effect of plasticizer on surface of free films prepared from aqueous solutions of salts of cationic polymers with different plasticizers. Appl Surf Sci. 2007;253(17):7303–8.CrossRefGoogle Scholar
  68. 68.
    Serajuddin ATM, Mufson D, Bernstein DF, Sheen P-C, Augustine MA. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. J Pharm Sci. 1988;77(5):414–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Petereit H-U, Weisbrod W. Formulation and process considerations affecting the stability of solid dosage forms formulated with methacrylate copolymers. Eur J Pharm Biopharm. 1999;47(1):15–25.PubMedCrossRefGoogle Scholar
  70. 70.
    Lin S-Y, Chen K-S, Run-Chu L. Organic esters of plasticizers affecting the water absorption, adhesive property, glass transition temperature and plasticizer permanence of Eudragit acrylic films. J Control Release. 2000;68(3):343–50.PubMedCrossRefGoogle Scholar
  71. 71.
    Parikh T, Gupta SS, Meena A, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, III: polymethacrylates and polymethacrylic acid based polymers. J Excip Food Chem. 2014;5(1):56–64.Google Scholar
  72. 72.
    Pignatello R, Ferro M, Puglisi G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions. AAPS PharmSciTech. 2002;3(2):35–45.PubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pignatello R, Spadaro D, Vandelli MA, Forni F, Puglisi G. Characterization of the mechanism of interaction in ibuprofen-Eudragit RL100® coevaporates. Drug Dev Ind Pharm. 2004;30(3):277–88.PubMedCrossRefGoogle Scholar
  74. 74.
    Ishikawa Y, Katoh Y, Ohshima H. Colloidal stability of aqueous polymeric dispersions: effect of pH and salt concentration. Colloids Surf B Biointerfaces. 2005;42(1):53–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Kanig JL. Production and testing of enteric coatings. Drug Stand. 1954;22:113–21.Google Scholar
  76. 76.
    Roxin P, Karlsson A, Singh SK. Characterization of cellulose acetate phthalate (CAP). Drug Dev Ind Pharm. 1998;24(11):1025–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Delporte J. Effects of ageing on physico-chemical properties of free cellulose acetate phthalate films. Pharm Ind. 1979;41(10):984–90.Google Scholar
  78. 78.
    Karlsson A, Singh SK. Thermal and mechanical characterization of cellulose acetate phthalate films for pharmaceutical tablet coating: effect of humidity during measurements. Drug Dev Ind Pharm. 1998;24(9):827–34.PubMedCrossRefGoogle Scholar
  79. 79.
    Agyilirah GA, Banker GS, Tarcha P. Polymers for enteric coating applications, vol. 39. Boca Raton: CRC Press; 1991.Google Scholar
  80. 80.
    Crawford R, Esmerian O. Effect of plasticizers on some physical properties of cellulose acetate phthalate films. J Pharm Sci. 1971;60(2):312–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Obara S, McGinity JW. Influence of processing variables on the properties of free films prepared from aqueous polymeric dispersions by a spray technique. Int J Pharm. 1995;126(1–2):1–10.CrossRefGoogle Scholar
  82. 82.
    Liu J, Williams RO. Long-term stability of heat-humidity cured cellulose acetate phthalate coated beads. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2002;53(2):167–73.CrossRefGoogle Scholar
  83. 83.
    Nakamichi K, Izumi S, Yasuura H. Method of manufacturing solid dispersion. 1995.Google Scholar
  84. 84.
    Stroyer A, McGinity JW, Leopold CS. Solid state interactions between the proton pump inhibitor omeprazole and various enteric coating polymers. J Pharm Sci. 2006;95(6):1342–53.PubMedCrossRefGoogle Scholar
  85. 85.
    Tarcha PJ, editor. Polymers for controlled drug delivery. Boca Raton: CRC Press; 1991. p. 286.Google Scholar
  86. 86.
    Porter S. The use of opadry, coateric, and surelease in the aqueous film coating of pharmaceutical oral dosage forms. In: McGinity, editor. Aqueous polymeric coatings for pharmaceutical dosage forms. New York: Marcel Decker, Inc.; 1989. p. 317–62.Google Scholar
  87. 87.
    The Pharmaceutical Codex, 11th Ed. The pharmaceutical press, one Lambeth high St., London SE1 7JN, England. 1979. 1101pp. 17×25cm. Price £27. J Pharm Sci. 1980;69(3):368.Google Scholar
  88. 88.
    Peña LA, Hoggard PE. Hexachlororhodate (III) and the photocatalytic decomposition of chloroform. J Mol Catal Chem. 2010;327(1):20–4.CrossRefGoogle Scholar
  89. 89.
    Kanakal M, Sakeena M, Azmin M, Yusrida D. Effect of coating solvent ratio on the drug release lag time of coated theophylline osmotic tablets. Trop J Pharm Res. 2009;8(3):239–45.Google Scholar
  90. 90.
    Snejdrova E, Dittrich M. Pharmaceutically used plasticizers. Recent Adv Plast. 2012:45–68.Google Scholar
  91. 91.
    Allen LV Jr. Featured excipient: plasticizers. Int J Pharm Compd. 2003;7(2):145.Google Scholar
  92. 92.
    Vanin F, Sobral P, Menegalli F, Carvalho R, Habitante A. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll. 2005;19(5):899–907.CrossRefGoogle Scholar
  93. 93.
    Hsu E, Gebert M, Becker N, Gaertner A. The effects of plasticizers and titanium dioxide on the properties of poly (vinyl alcohol) coatings. Pharm Dev Technol. 2001;6(2):277–84.PubMedCrossRefGoogle Scholar
  94. 94.
    Kakinoki K, Yamane K, Teraoka R, Otsuka M, Matsuda Y. Effect of relative humidity on the photocatalytic activity of titanium dioxide and photostability of famotidine. J Pharm Sci. 2004;93(3):582–9.PubMedCrossRefGoogle Scholar
  95. 95.
    SAYRE RM, DOWDY JC. Titanium dioxide and zinc oxide induce photooxidation of unsaturated lipids. Cosmet Toilet. 2000;115(10):75–82.Google Scholar
  96. 96.
    Moreton RC. Excipient interactions. Excip Dev Pharm Biotechnol Drug Deliv Syst. 2006;93.Google Scholar
  97. 97.
    Overgaard A, Møller-Sonnergaard J, Christrup L, Højsted J, Hansen R. Patients’ evaluation of shape, size and colour of solid dosage forms. Pharm World Sci. 2001;23(5):185–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Pritee SM, Gondkar S, Saudagar R. Int J Pharma Bio Sci ISSN.Google Scholar
  99. 99.
    Kathpalia H, Sharma K, Doshi G. Recent trends in hard gelatin capsule delivery system. J Adv Pharm Educ Res. 2014;4(2):165–78.Google Scholar
  100. 100.
    Allen LV, Popovich NG, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. 9th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011. p. 710.Google Scholar
  101. 101.
    Rahman MA, Hussain A, Hussain MS, Mirza MA, Iqbal Z. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev Ind Pharm. 2013;39(1):1–19.PubMedCrossRefGoogle Scholar
  102. 102.
    Cole ET, Cadé D, Benameur H. Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv Drug Deliv Rev. 2008;60(6):747–56.PubMedCrossRefGoogle Scholar
  103. 103.
    Ling WC. Thermal degradation of gelatin as applied to processing of gel mass. J Pharm Sci. 1978;67(2):218–23.PubMedCrossRefGoogle Scholar
  104. 104.
    Benza HI, Munyendo WL. A review of progress and challenges in soft gelatin capsules formulations for oral administration. Int J Pharm Sci Rev Res. 2011;10(1):20–4.Google Scholar
  105. 105.
    Murachanian D. Two-piece hard capsules for pharmaceutical formulations. J GXP Compliance. 2010;14(3):31.Google Scholar
  106. 106.
    Ishida M, Abe K, Hashizume M, Kawamura M. A novel approach to sustained pseudoephedrine release: differentially coated mini-tablets in HPMC capsules. Int J Pharm. 2008;359(1–2):46–52.PubMedCrossRefGoogle Scholar
  107. 107.
    Lennartz P, Mielck J. Minitabletting: improving the compactability of paracetamol powder mixtures. Int J Pharm. 1998;173(1):75–85.CrossRefGoogle Scholar
  108. 108.
    Jalali M, Abedi D, Varshosaz J, Najjarzadeh M, Mirlohi M, Tavakoli N. Stability evaluation of freeze-dried lactobacillus paracasei subsp. tolerance and lactobacillus delbrueckii subsp. bulgaricus in oral capsules. Res Pharm Sci. 2011;7(1):31–6.Google Scholar
  109. 109.
    Zayed G, Roos YH. Influence of trehalose and moisture content on survival of lactobacillus salivarius subjected to freeze-drying and storage. Process Biochem. 2004;39(9):1081–6.CrossRefGoogle Scholar
  110. 110.
    Pyne A, Chatterjee K, Suryanarayanan R. Solute crystallization in mannitol–glycine systems—implications on protein stabilization in freeze-dried formulations. J Pharm Sci. 2003;92(11):2272–83.PubMedCrossRefGoogle Scholar
  111. 111.
    Kim AI, Akers MJ, Nail SL. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J Pharm Sci. 1998;87(8):931–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Dubost DC, Kaufman MJ, Zimmerman JA, Bogusky MJ, Coddington AB, Pitzenberger SM. Characterization of a solid state reaction product from a lyophilized formulation of a cyclic heptapeptide. A novel example of an excipient-induced oxidation. Pharm Res. 1996;13(12):1811–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Holm R, Porter CJ, Müllertz A, Kristensen HG, Charman WN. Structured triglyceride vehicles for oral delivery of halofantrine: examination of intestinal lymphatic transport and bioavailability in conscious rats. Pharm Res. 2002;19(9):1354–61.PubMedCrossRefGoogle Scholar
  114. 114.
    Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res. 1995;12(11):1561–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Kimura M, Shizuki M, Miyoshi K, Sakai T, Hidaka H, Takamura H, et al. Relationship between the molecular structures and emulsification properties of edible oils. Biosci Biotechnol Biochem. 1994;58(7):1258–61.CrossRefGoogle Scholar
  116. 116.
    Hauss DJ, Fogal SE, Ficorilli JV, Price CA, Roy T, Jayaraj AA, et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 1998;87(2):164–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Frankel E. Lipid oxidation 2nd ed. Bridg UK Oily Pres. 2005.Google Scholar
  118. 118.
    Nhan PP, Hoa NK. Effect of light and storage time on vitamin E in pharmaceutical products. Br J Pharmacol Toxicol. 2013;4(5):176–80.Google Scholar
  119. 119.
    Meinzer A, Mueller E, Vondersher J. Microemulsion—a suitable galenical approach for the absorption enhancement of poorly soluble compounds. Bull Tech-Gattefosse. 1995;88:21–6.Google Scholar
  120. 120.
    Shah N, Carvajal M, Patel C, Infeld M, Malick A. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm. 1994;106(1):15–23.CrossRefGoogle Scholar
  121. 121.
    Ha E, Wang W, John WY. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91(10):2252–64.PubMedCrossRefGoogle Scholar
  122. 122.
    Ayorinde F, Gelain SV, Johnson J, Wan LW. Analysis of some commercial polysorbate formulations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14(22):2116–24.PubMedCrossRefGoogle Scholar
  123. 123.
    Brandner JD. The composition of NF-defined emulsifiers: sorbitan monolaurate, monopalmitate, monostearate, monooleate, polysorbate 20, polysorbate 40, polysorbate 60, and polysorbate 80. Drug Dev Ind Pharm. 1998;24(11):1049–54.PubMedCrossRefGoogle Scholar
  124. 124.
    Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.PubMedCrossRefGoogle Scholar
  125. 125.
    Cory WC, Harris C, Martinez S. Accelerated degradation of ibuprofen in tablets. Pharm Dev Technol. 2010;15(6):636–43.PubMedCrossRefGoogle Scholar
  126. 126.
    Christiansen A, Backensfeld T, Kühn S, Weitschies W. Stability of the non-ionic surfactant polysorbate 80 investigated by HPLC-MS and charged aerosol detector. Pharm- Int J Pharm Sci. 2011;66(9):666–71.Google Scholar
  127. 127.
    Milanović M, Krstonošić V, Dokić L, Hadnađev M, Dapčević HT. Insight into the interaction between Carbopol® 940 and ionic/nonionic surfactant. J Surfactant Deterg. 2015;18(3):505–16.CrossRefGoogle Scholar
  128. 128.
    Moore F, Okelo G, Colón I, Kushner J. Improving the hardness of dry granulated tablets containing sodium lauryl sulfate. Int J Pharm. 2010;400(1–2):37–41.PubMedCrossRefGoogle Scholar
  129. 129.
    Zhao F, Malayev V, Rao V, Hussain M. Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells. Pharm Res. 2004;21(1):144–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Nema S, Washkuhn RJ, Brendel RJ. Excipients and their use in injectable products. J Pharm Sci Technol. 1997;51:166–71.Google Scholar
  131. 131.
    Wang W, John Wang Y, Wang DQ. Dual effects of tween 80 on protein stability. Int J Pharm. 2008;347:31–8.PubMedCrossRefGoogle Scholar
  132. 132.
    de Carvalho LAEB, Marques MPM, Tomkinson J. Drug-excipient interactions in ketoprofen: a vibrational spectroscopy study. Biopolymers. 2006;82(4):420–4.CrossRefGoogle Scholar
  133. 133.
    Mengele EA, Kartasheva ZS, Plashchina IG, Kasaikina OT. Specific features of lecithin oxidation in organic solvents. Colloid J. 2008;70(6):753–8.CrossRefGoogle Scholar
  134. 134.
    Haj-Ahmad RR, Elkordy AA, Chaw CS, Moore A. Compare and contrast the effects of surfactants (Pluronic®F-127 and Cremophor®EL) and sugars (β-cyclodextrin and inulin) on properties of spray dried and crystallised lysozyme. Eur J Pharm Sci. 2013;49(4):519–34.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Mittal A. Darji
    • 1
  • Rahul M. Lalge
    • 1
  • Sushrut P. Marathe
    • 1
  • Tarul D. Mulay
    • 1
  • Tasnim Fatima
    • 1
  • Alia Alshammari
    • 1
  • Hyung Kyung Lee
    • 1
  • Michael A Repka
    • 1
  • S. Narasimha Murthy
    • 1
    • 2
    Email author
  1. 1.Department of Pharmaceutics and Drug DeliveryThe University of MississippiUniversityUnited States
  2. 2.Institute for Drug Delivery and Biomedical ResearchBangaloreIndia

Personalised recommendations