Skip to main content

Advertisement

Log in

Development and Evaluation of pH-Responsive Cyclodextrin-Based in situ Gel of Paliperidone for Intranasal Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Paliperidone (PLPD) is approved for treatment and management of schizophrenia. The current study demonstrates the potential of in situ gel of PLPD for nasal delivery. The permeation of drug through sheep nasal mucosa was analyzed since the nose-to-brain pathway has been indicated for delivering drugs to the brain. The carbopol 934 (CP)- and hydroxypropyl methyl cellulose K4M (HPMC)-based in situ gels containing 0.2% CP and 0.4% w/v HPMC were optimized using experimental design software. The use of hydroxypropyl-β-cyclodextrin (HP-β-CD) in nasal permeation of drug was investigated. Transmucosal permeation of PLPD was examined using sheep nasal mucosa. The in situ gels of PLPD exhibited satisfactory mucoadhesion and showed sustained drug release. The mucocilliary toxicity and histopathological examination confirmed that the nasal mucosa architecture remains unaffected after treatment with PLPD in situ gel. The formulation containing HP-β-CD complex of PLPD exhibited higher rate of drug permeation through sheep nasal mucosa revealing the role of HP-β-CD as nasal absorption enhancer. Thus, CP- and HPMC-based pH-triggered in situ gel containing HP-β-CD-drug inclusion complex demonstrates a novel nasal delivery of PLPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaplan G, Casoy J, Zummo J. Impact of long-acting injectable antipsychotics on medication adherence and clinical, functional, and economic outcomes of schizophrenia. Patient Prefer Adherence. 2013;7:1171–80.

  2. Kozielska M, Johnson M, Pilla Reddy V, Vermeulen A, Li C, Grimwood S, de Greef R, Groothuis GM, Danhof M, Proost JH. Pharmacokinetic-pharmacodynamic modeling of the D2 and 5-HT (2A) receptor occupancy of risperidone and paliperidone in rats. Pharm Res. 2012;29(7):1932–48.

  3. Beauvais G, Atwell K, Jayanthi S, Ladenheim B, Cadet JL. Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS One. 2011;6(12):e28946.

  4. Daghistani N, Rey JA. Invega Trinza: The First Four-Times-a-Year, Long-Acting Injectable Antipsychotic Agent. PT. 2016;41(4):224–7.

  5. Tandon R. Antipsychotics in the treatment of schizophrenia: an overview. J Clin Psychiatry. 2011;72(Suppl 1):4–8.

  6. Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(7):1159–72.

  7. Yang LPH, Plosker GL. Paliperidone extended release. CNS Drugs. 2007;21(5):417–25.

  8. Owen RT. Extended-release paliperidone: efficacy, safety and tolerability profile of a new atypical antipsychotic. Drugs Today. 2007;43(4):249–58.

  9. Janicak PG, Winans EA. Paliperidone ER: a review of the clinical trial data. Neuropsychiatr Dis Treat. 2007;3(6):869–83.

  10. Kulkarni K, Bhambere T, Chaudhary G, Talele S, Moghal R. Brain Targeting through Intranasal Route. Int J PharmTech Res. 2013;5(4):1441–50.

  11. Marianeccia C, Rinaldib F, Hanieha PN, Paolinoc D, Marzioe LD, Carafa M. Nose to Brain Delivery: New Trends in Amphiphile-Based “Soft” Nanocarriers. Curr Pharm Des. 2015;21(36):5225–32.

  12. Shyeilla VD, Hanson LR, Frey W II. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

  13. Phukan K, Nandy M, Sharma RB, Sharma HK. Nanosized Drug Delivery Systems for Direct Nose to Brain Targeting: A Review. Recent Pat Drug Deliv Formul. 2016;10(2):156–64.

  14. Ritger PL, Peppas NA. A simple equation for description of solute release ii. fickian and anomalous release from swellable devices. J Control Rel. 1987; 5(1): 37-42.

  15. Pereswetoff-Morath L. Microspheres as nasal drug delivery systems. Adv Drug Deliv Rev. 1998;29(1-2):185–94.

  16. Kawasaki N, Ohkura R, Miyazaki S, Uno Y, Sugimoto S, Attwood D. Thermally reversible xyloglucan gets as vehicles for oral drug delivery. Int J Pharm. 1999;181(2):227–34.

  17. Donovan MD, Flynn GL, Amidon GL. Absorption of polyethylene glycols 600 through 2000: the molecular weight dependence of gastrointestinal and nasal absorption. Pharm Res. 1990;7(8):863–8.

  18. Alsarra IA, Hamed AY, Alanazi FK, El Maghraby GM. Vesicular systems for intranasal administration drug delivery to the central nervous system. In: Jain KK, editor. Drug delivery to the central nervous system, neuromethods: LLC: Humana Press; 2009. p. 177–205.

  19. Magnúsdóttir A, Másson M, Loftsson T. Cyclodextrins. J Incl Phenom Macro Chem. 2002;44:213–8.

  20. Gould S, Scott RC. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–9.

  21. Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci. 1996;85(11):1142–69.

  22. Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci. 1997;86(2):147–62.

  23. Merkus FW, Verhoef JC, Romeijn SG, Schipper NG. Interspecies difference in the nasal absorption of insulin. Pharm Res. 1991;8(10):1343.

  24. Shao Z, Li Y, Chermak T, Mitra AK. Cyclodextrins as mucosal absorption promoters of insulin. II. Effects of beta-cyclodextrin derivatives on alphachymotryptic degradation and enteral absorption of insulin in rats. Pharm Res. 1994;11(8):1174–9.

  25. Yang T, Hussain A, Paulson J, Abbruscato TJ, Ahsan F. Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm Res. 2004;21(7):1127–36.

  26. Patel MR, Patel RB, Bhatt BB, Patel GB, Gaikwad RV. Paliperidone microemulsion for nose-to-brain targeted drug deliverysystem: pharmacodynamic and pharmacokinetic evaluation. Drug Deliv. 2016;23(1):346–54.

  27. Sherje AP, Londhe VY. Inclusion Complexes of Hydroxy Propyl-beta-Cyclodextrin and Paliperidone: Preparation and Characterization. Curr Drug Disc Tech. 2014;11(4):271–8.

  28. Song J, Bi H, Xie X, Guo J, Wang X, Liu D. Preparation and evaluation of sinomenine hydrochloride in situ gel for uveitis treatment. Inter Immunopharm. 2013;17(1):99–107.

  29. Zaki NM, Awad GA, Mortada ND, Abd El Hady SS. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and Mucociliary transport properties. Eur J Pharm Sci. 2007;32(4-5):296–307.

  30. Wu H, Liu Z, Peng J, Li L, Li N, Li J, Pan H. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int J Pharm. 2011;410(1-2):31–40.

  31. Srividya B, Cardoza RM, Amin PD, Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Rel. 2001;73(2-3):205–11.

  32. Fawaz F, Koffi A, Guyot M, Millet P. Comparative in vitro–in vivo study of two quinine rectal gel formulations. Int J Pharm. 2004;280(1-2):151–62.

  33. Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int J Pharm. 2011;411(1-2):128–35.

  34. Pund S, Rasve G, Borade G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur J Pharm Sci. 2013;48(1-2):195–201.

  35. Sherje A, Londhe V. Stability indicating HPLC method for determination of paliperidone in bulk. Inter J PharmTech Res. 2015;8(8):157–63.

  36. Samson G, García de la Calera A, Dupuis-Girod S, Faure F, Decullier E, Paintaud G, Vignault C, Scoazec JY, Pivot C, Plauchu H, Pirot F. Ex vivo study of bevacizumab transport through porcine nasal mucosa. Eur J Pharm Biopharm. 2012;80(2):465–9.

  37. Gavini E, Rassu G, Sanna V, Cossu M, Giunchedi P. Mucoadhesive microspheres for nasal administration of an antiemetic drug, metoclopramide: in-vitro/ex-vivo studies. J Pharm Pharmacol. 2005;57(3):287–94.

  38. Yong CS, Choi JS, Qi-Z Q, Jong-D R, Chong-K K, Soo-J L, Kyung-M K, Phil-S O, Han-G C. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing Diclofenac sodium. Int J Pharm. 2001;26(1-2):195–205.

  39. Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Targ. 2010;18(3):223–34.

  40. Kaur P, Garg T, Vaidya B, Prakash A, Rath G, Goyal AK. Brain delivery of intranasal in situ gel of nanoparticulated polymeric carriers containing antidepressant drug: behavioral and biochemical assessment. J Drug Target. 2015;23(3):275–86.

  41. Danel C, Azaroual N, Brunel A, Lannoy D, Vermeersch G, Odou P, Vaccher C. Study of the complexation of risperidone and 9-hydroxyrisperidone with cyclodextrin hosts using affinity capillary electrophoresis and 1H NMR spectroscopy. J Chromatogr A. 2008;1215:185–93. J Chromatogr A. 2008;1215(1-2):185–93.

  42. Cai Z, Song X, Sun F, Yang Z, Hou S, Liu Z. Formulation and evaluation of in situ gelling systems for intranasal administration of gastrodin. AAPS PharmSciTech. 2011;12(4):1102–9.

  43. Watts P, Smith A. PecSys: in situ gelling system for optimised nasal drug delivery. Expert Opin Drug Deliv. 2009;6(5):543–52.

  44. El-Kamel AH. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2002;241(1):47–55.

  45. Nonaka N, Farr SA, Kageyama H, Shioda S, Banks WA. Delivery of galanin-like peptide to the brain: targeting with intranasal delivery and cyclodextrins. J Pharmacol Exp Therap. 2008;325(2):513–9.

  46. Buchwald P, Bodor N. Brain-Targeting Chemical Delivery Systems and Their Cyclodextrin-Based Formulations in Light of the Contributions of Marcus E. Brewster. J Pharm Sci. 2016;105:2589–600.

  47. Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, Sorrenti M, Catenacci L, Di Pietra AM, Zecchi V. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci. 2011;44(4):559–65.

  48. Marttin E, Verhoef JC, Merkus FW. Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J Drug Target. 1998;6(1):17–36.

  49. Marttin E, Verhoef JC, Cullander C, Romeijn SG, Nagelkerke JF, Merkus FWHM. Confocal laser scanning microscopic visualization of the transport of dextrans after nasal administration to rats: effects of absorption enhancers. Pharm Res. 1997;14(5):631–7.

  50. Li X, Du L, Chen X, Ge P, Wang Y, Fu Y, Sun H, Jiang Q, Jin Y. Nasal delivery of analgesic ketorolac tromethamine thermo- and ion-sensitive in situ hydrogels. Int J Pharm. 2015;489(1-2):252–60.

  51. Romeo VD, deMeireles J, Sileno AP, Pimplaskar HK, Behl CR. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Del Rev. 1998;29(1-2):89–116.

  52. Yang J, Wiley CJ, Godwin DA, Felton LA. Influence of hydroxypropyl-beta-cyclodextrin on transdermal penetration and photostability of avobenzone. Eur J Pharm Biopharm. 2008;69(2):605–12.

  53. Zhang Y, Meng FC, Cui YL, Song YF. Enhancing effect of hydroxypropyl-β-cyclodextrin on the intestinal absorption process of genipin. J Agric Food Chem. 2011;59(20):10919–26.

  54. Anumolu S, Singh Y, Gao D. Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response. J Control Release. 2009;137(2):152–9.

  55. Cho HJ, Balakrishnan P, Park EK, Song KW, Hong SS, Jang TY, Kim KS, Chung SJ, Shim CK, Kim DD. Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride. J Pharm Sci. 2011;100(2):681–91.

  56. Shahiwala A, Misra A. Nasal delivery of levonorgestrel for contraception: an experimental study in rats. Fertil Steril. 2004;81(suppl 1):893–8.

  57. Majithiya RJ, Ghosh PK, Umrethia ML, Murthy RSR. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTechnol. 2006;7(3):67.

Download references

Acknowledgements

The authors are thankful to Cadila Pharmaceuticals Ltd., India, and Gangwal Chemicals Pvt. Ltd., India, for providing gift samples of paliperidone and HP-β-CD, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul P. Sherje.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest in publication of described work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherje, A.P., Londhe, V. Development and Evaluation of pH-Responsive Cyclodextrin-Based in situ Gel of Paliperidone for Intranasal Delivery. AAPS PharmSciTech 19, 384–394 (2018). https://doi.org/10.1208/s12249-017-0844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0844-8

KEY WORDS

Navigation