AAPS PharmSciTech

, Volume 19, Issue 1, pp 201–212 | Cite as

Antiproliferative Activity and VEGF Expression Reduction in MCF7 and PC-3 Cancer Cells by Paclitaxel and Imatinib Co-encapsulation in Folate-Targeted Liposomes

  • Marco Júnio Peres-Filho
  • Alexandre Pereira dos Santos
  • Thais Leite Nascimento
  • Renato Ivan de Ávila
  • Fabrícia Saba Ferreira
  • Marize Campos Valadares
  • Eliana Martins LimaEmail author
Research Article


Co-encapsulation of anticancer drugs paclitaxel and imatinib in nanocarriers is a promising strategy to optimize cancer treatment. Aiming to combine the cytotoxic and antiangiogenic properties of the drugs, a liposome formulation targeted to folate receptor co-encapsulating paclitaxel and imatinib was designed in this work. An efficient method was optimized for the synthesis of the lipid anchor DSPE-PEG(2000)-folic acid (FA). The structure of the obtained product was confirmed by RMN, FT-IR, and ESI-MS techniques. A new analytical method was developed and validated for simultaneous quantification of the drugs by liquid chromatography. Liposomes, composed of phosphatidylcholine, cholesterol, and DSPE-mPEG(2000), were prepared by extrusion. Their surface was modified by post-insertion of DSPE-PEG(2000)-FA. Reaction yield for DSPE-PEG(2000)-FA synthesis was 87%. Liposomes had a mean diameter of 122.85 ± 1.48 nm and polydispersity index of 0.19 ± 0.01. Lyophilized formulations remained stable for 60 days in terms of size and drug loading. FA-targeted liposomes had a higher effect on MCF7 cell viability reduction (p < 0.05) when compared with non-targeted liposomes and free paclitaxel. On PC-3 cells, viability reduction was greater (p < 0.01) when cells were exposed to targeted vesicles co-encapsulating both drugs, compared with the non-targeted formulation. VEGF gene expression was reduced in MCF7 and PC-3 cells (p < 0.0001), with targeted vesicles exhibiting better performance than non-targeted liposomes. Our results demonstrate that multifunctional liposomes associating molecular targeting and multidrug co-encapsulation are an interesting strategy to achieve enhanced internalization and accumulation of drugs in targeted cells, combining multiple antitumor strategies.


liposomes co-encapsulation folate receptor tumor targeting VEGF 



This work was financially supported by the following Brazilian research funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Pesquisas (FINEP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio à Pesquisa da Universidade Federal de Goiás (FUNAPE), and Fundação de Apoio à Pesquisa do Estado de Goiás (FAPEG). The authors would like to thank Prof. Dr. Cecília Maria Alves de Oliveira and Dr. Monique Ferreira Marques from the Chemistry Institute/Federal University of Goias, for the assistance with synthesis and chemical characterization of the phospholipid anchor.

Author Contributions

Not applicable.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12249_2017_830_Fig8_ESM.gif (19 kb)
Fig. S1

a 1H NMR spectrum of the DSPE-PEG(2000)-FA reaction product and b detail of the spectrum. Notes: The spectra obtained demonstrated regions containing aliphatic hydrogens at δ 0.87 (t, CH3, 6H), δ 1.25 (s, CH2, ~57H), δ 1.58 (m, CH2CH2CO, 4H), δ 2.27 (m, CH2, ~6H), δ 3.96 (m, CH2CH2N, 4H), and δ 3.66 (s, PEG, ~175H). Additionally, signals related to hydrogen next to the amide and phosphate groups were observed at δ 4.18 (t, CH2OCONH, 2H), δ 4.37 (dd, trans-PO4CH2CH, 1H), and δ 5.21 (m, PO4CH2CH, 1H), respectively, indicating binding of DSPE-PEG(2000)-NH2 to folic acid. The hydrogen related to the aromatic moiety of the molecule were observed at δ 6.62 (m, 3′,5′-H, 1H) and δ 7.91 (m, 1H) (Fig. S1 B). Abbreviations: DSPE-PEG(2000)-FA 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(folate(polyethylene glycol)-2000), DSPE-PEG-NH 2 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino(polyethylene glycol)-2000). (GIF 19 kb)

12249_2017_830_MOESM1_ESM.tif (260 kb)
High-resolution image (TIFF 260 kb)


  1. 1.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310–6. doi: 10.1158/1078-0432.CCR-07-1441.CrossRefPubMedGoogle Scholar
  2. 2.
    Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–88. doi: 10.1146/annurev.bioeng.9.060906.152025.CrossRefPubMedGoogle Scholar
  3. 3.
    Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5:1909–17. doi: 10.1158/1535-7163.MCT-06-0141.CrossRefPubMedGoogle Scholar
  4. 4.
    Touchefeu Y, Montassier E, Nieman K, Gastinne T, Potel G, des Bruley Varannes S, et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis—current evidence and potential clinical applications. Aliment Pharmacol Ther. 2014;40:409–21. doi: 10.1111/apt.12878.PubMedGoogle Scholar
  5. 5.
    Wang P, Yang HL, Yang YJ, Wang L, Lee SC. Overcome cancer cell drug resistance using natural products. Evid Based Complement Alternat Med. 2015;2015:767136. doi: 10.1155/2015/767136.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine. 2016;12:81–103. doi: 10.1016/j.nano.2015.08.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–9. doi: 10.1016/ Scholar
  8. 8.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22. doi: 10.1126/science.1095833.CrossRefPubMedGoogle Scholar
  9. 9.
    Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17:2950–62. doi: 10.1016/j.bmc.2009.02.043.CrossRefPubMedGoogle Scholar
  10. 10.
    Ganju A, Yallapu MM, Khan S, Behrman SW, Chauhan SC, Jaggi M. Nanoways to overcome docetaxel resistance in prostate cancer. Drug Resist Updat. 2014;17:13–23. doi: 10.1016/j.drup.2014.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nascimento TL, Hillaireau H, Vergnaud J, Fattal E. Lipid-based nanosystems for CD44 targeting in cancer treatment: recent significant advances, ongoing challenges and unmet needs. Nanomedicine. 2016;11:1865–87. doi: 10.2217/nnm-2016-5000.CrossRefPubMedGoogle Scholar
  12. 12.
    Ben-Eltriki M, Deb S, Guns ES. Calcitriol in combination therapy for prostate cancer: pharmacokinetic and pharmacodynamic interactions. J Cancer. 2016;7:391–407. doi: 10.7150/jca.13470.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tardi PG, Gallagher RC, Johnstone S, Harasym N, Webb M, Bally MB, et al. Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim Biophys Acta. 2007;1768:678–87. doi: 10.1016/j.bbamem.2006.11.014.CrossRefPubMedGoogle Scholar
  14. 14.
    Zucker D, Barenholz Y. Optimization of vincristine-topotecan combination—paving the way for improved chemotherapy regimens by nanoliposomes. J Control Release. 2010;146:326–33. doi: 10.1016/j.jconrel.2010.05.024.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang J, Goh B, Lu W, Zhang Q, Chang A, Liu XY, et al. In vitro cytotoxicity of stealth liposomes co-encapsulating doxorubicin and verapamil on doxorubicin-resistant tumor cells. Biol Pharm Bull. 2005;28:822–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Mundhenke C, Weigel MT, Sturner KH, Roesel F, Meinhold-Heerlein I, Bauerschlag DO, et al. Novel treatment of ovarian cancer cell lines with Imatinib mesylate combined with paclitaxel and carboplatin leads to receptor-mediated antiproliferative effects. J Cancer Res Clin Oncol. 2008;134:1397–405. doi: 10.1007/s00432-008-0408-0.CrossRefPubMedGoogle Scholar
  17. 17.
    Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med. 1995;332:1004–14. doi: 10.1056/NEJM199504133321507.CrossRefPubMedGoogle Scholar
  18. 18.
    Litz J, Krystal GW. Imatinib inhibits c-kit-induced hypoxia-inducible factor-1alpha activity and vascular endothelial growth factor expression in small cell lung cancer cells. Mol Cancer Ther. 2006;5:1415–22. doi: 10.1158/1535-7163.MCT-05-0503.CrossRefPubMedGoogle Scholar
  19. 19.
    Lu Y, Ding N, Yang C, Huang L, Liu J, Xiang G. Preparation and in vitro evaluation of a folate-linked liposomal curcumin formulation. J Liposome Res. 2012;22:110–9. doi: 10.3109/08982104.2011.627514.CrossRefPubMedGoogle Scholar
  20. 20.
    Tomasina J, Lheureux S, Gauduchon P, Rault S, Malzert-Freon A. Nanocarriers for the targeted treatment of ovarian cancers. Biomaterials. 2013;34(4):1073–101. doi: 10.1016/j.biomaterials.2012.10.055.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang Z, Yao J. Preparation of irinotecan-loaded folate-targeted liposome for tumor targeting delivery and its antitumor activity. AAPS PharmSciTech. 2012;13:802–10. doi: 10.1208/s12249-012-9776-5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Haran G, Cohen R, Bar L, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993;1151:201–15. doi: 10.1016/0005-2736(93)90105-9.CrossRefPubMedGoogle Scholar
  23. 23.
    Guideline IHT. Validation of analytical procedures: text and methodology Q2(R1). 2005; Available from: Accessed 05 May 2017
  24. 24.
    Saez A, Guzman M, Molpeceres J, Aberturas MR. Freeze-drying of polycaprolactone and poly(d,l-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm. 2000;50:379–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Quero L, Dubois L, Lieuwes NG, Hennequin C, Lambin P. miR-210 as a marker of chronic hypoxia, but not a therapeutic target in prostate cancer. Radiother Oncol. 2011;101:203–8. doi: 10.1016/j.radonc.2011.05.063.CrossRefPubMedGoogle Scholar
  26. 26.
    Gabizon A, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM, et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem. 1999;10:289–98. doi: 10.1021/bc9801124.CrossRefPubMedGoogle Scholar
  27. 27.
    Hu CM, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83:1104–11. doi: 10.1016/j.bcp.2012.01.008.CrossRefPubMedGoogle Scholar
  28. 28.
    Mendes LP, Gaeti MP, de Ávila PH, Vieira MS, Rodrigues BS, de Ávila Marcelino RI, et al. Multicompartimental nanoparticles for co-encapsulation and multimodal drug delivery to tumor cells and neovasculature. Pharm Res. 2014;31:1106–19. doi: 10.1007/s11095-013-1234-x.PubMedGoogle Scholar
  29. 29.
    Meng J, Guo F, Xu H, Liang W, Wang C, Yang XD. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep. 2016;6:22390. doi: 10.1038/srep22390.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kang MJ, Park SH, Kang MH, Park MJ, Choi YW. Folic acid-tethered pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation. Int J Nanomedicine. 2013;8:1155–65. doi: 10.2147/IJN.S39491.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang C-J, Zhu G-J, Yu L, Shi B-H. Preparation, in vitro and in vivo antitumor activity of folate receptor-targeted nanoliposomes containing oridonin. Drug Dev Res. 2013;74:43–9. doi: 10.1002/ddr.21055.CrossRefGoogle Scholar
  32. 32.
    Ye P, Zhang W, Yang T, Lu Y, Lu M, Gai Y, et al. Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int J Nanomedicine. 2014;9:2167–78. doi: 10.2147/IJN.S60178.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tomasina J, Poulain L, Abeilard E, Giffard F, Brotin E, Carduner L, et al. Rapid and soft formulation of folate-functionalized nanoparticles for the targeted delivery of tripentone in ovarian carcinoma. Int J Pharm. 2013;458:197–207. doi: 10.1016/j.ijpharm.2013.09.025.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem. 1994;269:3198–204.PubMedGoogle Scholar
  35. 35.
    Park JW, Benz CC, Martin FJ. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol. 2004;31:196–205.CrossRefPubMedGoogle Scholar
  36. 36.
    Scomparin A, Salmaso S, Eldar-Boock A, Ben-Shushan D, Ferber S, Tiram G, et al. A comparative study of folate receptor-targeted doxorubicin delivery systems: dosing regimens and therapeutic index. J Control Release. 2015;208:106–20. doi: 10.1016/j.jconrel.2015.04.009.CrossRefPubMedGoogle Scholar
  37. 37.
    Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63:131–5. doi: 10.1016/j.addr.2010.03.011.CrossRefPubMedGoogle Scholar
  38. 38.
    Grant GJ, Barenholz Y, Piskoun B, Bansinath M, Turndorf H, Bolotin EM. DRV liposomal bupivacaine: preparation, characterization, and in vivo evaluation in mice. Pharm Res. 2001;18:336–43. doi: 10.1023/A:1011059131348.CrossRefPubMedGoogle Scholar
  39. 39.
    Lichtenberg D, Barenholz Y. Liposomes: preparation, characterization, and preservation. Methods Biochem Anal. 1988;33:337–462. doi: 10.1002/9780470110546.ch7.PubMedGoogle Scholar
  40. 40.
    Cabral ECM, Zollner RL, Santana MHA. Preparation and characterization of liposomes entrapping allergenic proteins. Braz J Chem Eng. 2004;21:137–46. doi: 10.1590/S0104-66322004000200002.CrossRefGoogle Scholar
  41. 41.
    Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J. 1996;71:2087–93. doi: 10.1016/S0006-3495(96)79407-9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gulati M, Grover M, Singh S, Singh M. Lipophilic drug derivatives in liposomes. Int J Pharm. 1998;165:129–68. doi: 10.1016/S0378-5173(98)00006-4.CrossRefGoogle Scholar
  43. 43.
    Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001;6:66–77. doi: 10.1016/S1359-0294(00)00090-X.CrossRefGoogle Scholar
  44. 44.
    Wang J, Wang Y, Liang W. Delivery of drugs to cell membranes by encapsulation in PEG-PE micelles. J Control Release. 2012;160:637–51. doi: 10.1016/j.jconrel.2012.02.021.CrossRefPubMedGoogle Scholar
  45. 45.
    Roussidis AE, Theocharis AD, Tzanakakis GN, Karamanos NK. The importance of c-kit and PDGF receptors as potential targets for molecular therapy in breast cancer. Curr Med Chem. 2007;14:735–43. doi: 10.2174/092986707780090963.CrossRefPubMedGoogle Scholar
  46. 46.
    Kübler HR, Randenborgh HV, Treiber U, Wutzler S, Battistel C, Lehmer A, et al. In vitro cytotoxic effects of imatinib in combination with anticancer drugs in human prostate cancer cell lines. Prostate. 2005;63(4):385–94. doi: 10.1002/pros.20201.CrossRefPubMedGoogle Scholar
  47. 47.
    Xiang B, Dong DW, Shi NQ, Gao W, Yang ZZ, Cui Y, et al. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials. 2013;34:6976–91. doi: 10.1016/j.biomaterials.2013.05.055.CrossRefPubMedGoogle Scholar
  48. 48.
    Buchdunger E, O'Reilly T, Wood J. Pharmacology of imatinib (STI571). Eur J Cancer. 2002;38:S28–36. doi: 10.1016/S0959-8049(02)80600-1.CrossRefPubMedGoogle Scholar
  49. 49.
    Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005;44:879–94. doi: 10.2165/00003088-200544090-00001.CrossRefPubMedGoogle Scholar
  50. 50.
    Bocci G, Di Paolo A, Danesi R. The pharmacological bases of the antiangiogenic activity of paclitaxel. Angiogenesis. 2013;16:481–92. doi: 10.1007/s10456-013-9334-0.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang J, Lou P, Lesniewski R, Henkin J. Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anti-Cancer Drugs. 2003;14:13–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Schultz JD, Rotunno S, Riedel F, Anders C, Erben P, Hofheinz RD, et al. Synergistic effects of imatinib and carboplatin on VEGF, PDGF and PDGF-Ralpha/ss expression in squamous cell carcinoma of the head and neck in vitro. Int J Oncol. 2011;38:1001–12. doi: 10.3892/ijo.2011.912.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhao P, Wang H, Yu M, Cao S, Zhang F, Chang J, et al. Paclitaxel-loaded, folic-acid-targeted and TAT-peptide-conjugated polymeric liposomes: in vitro and in vivo evaluation. Pharm Res. 2010;27:1914–26. doi: 10.1007/s11095-010-0196-5.CrossRefPubMedGoogle Scholar
  54. 54.
    Tong L, Chen W, Wu J, Li H. Folic acid-coupled nano-paclitaxel liposome reverses drug resistance in SKOV3/TAX ovarian cancer cells. Anti-Cancer Drugs. 2014;25:244–54. doi: 10.1097/CAD.0000000000000047.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Marco Júnio Peres-Filho
    • 1
    • 2
  • Alexandre Pereira dos Santos
    • 3
  • Thais Leite Nascimento
    • 2
  • Renato Ivan de Ávila
    • 3
  • Fabrícia Saba Ferreira
    • 2
  • Marize Campos Valadares
    • 3
  • Eliana Martins Lima
    • 2
    • 4
    Email author
  1. 1.State University of GoiásCampus ItumbiaraBrazil
  2. 2.Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems, School of PharmacyFederal University of GoiásGoiâniaBrazil
  3. 3.Laboratory of Cellular Pharmacology and Toxicology, School of PharmacyFederal University of GoiásGoiâniaBrazil
  4. 4.Faculdade de FarmáciaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations