Advertisement

AAPS PharmSciTech

, Volume 19, Issue 1, pp 134–147 | Cite as

Synthesis and characterization of novel carboxymethyl Assam Bora rice starch for the controlled release of cationic anticancer drug based on electrostatic interactions

  • Sharmistha MohapatraEmail author
  • Anees Ahmad SiddiquiEmail author
  • Mohammed Anwar
  • Neha Bhardwaj
  • Sohail Akhter
  • Farhan Jalees Ahmad
Research Article
  • 279 Downloads

Abstract

Carboxymethyl Assam Bora rice starch (CM-ABRS) was chemically synthesized in non-aqueous medium with the optimum degree of substitution (DS) of 1.23, and physicochemically characterized by FT-IR, DSC, XRD, and SEM analysis. Comparative evaluation of CM-ABRS with native starch (ABRS) for powder flow characteristics, swelling index, apparent solubility, rheological properties, textural properties, and mucoadhesive studies were carried out. The aim of the current work was to investigate the potential of CM-ABRS as a novel carrier for the water-soluble chemotherapeutic, doxorubicin hydrochloride (DOX). Formation of drug/polymer complex (DOX-CM-ABRS) via electrostatic interaction has been evaluated for the controlled release of DOX in three different pH media (phosphate-buffered saline (PBS), pH 7.4, 6.8, and 5.5). In vitro drug release studies illustrated faster release of drug in PBS at pH 5.5 as compared to pH 6.8 and pH 7.4, respectively, indicating the importance of pH-sensitive drug release from the DOX-CM-ABRS complex in malignant tissues.

KEY WORDS

drug delivery carboxymethylation degree of substitution doxorubicin hydrochloride pH-sensitive release 

Notes

Acknowledgements

We are grateful for support from the Indian Council of Medical Research (ICMR), India, as Senior Research Fellowship (Grant No. 45/36/2014-Nan/BMS). We also thank NII, New Delhi, India, for carrying out the SEM, and Jamia Millia Islamia, New Delhi, India, for conducting XRD analysis of samples.

Compliance with ethical standards

Conflict of interest

The authors state no conflict of interest and have received no payment in preparation of this manuscript.

Supplementary material

12249_2017_824_Fig9_ESM.gif (75 kb)
Supplemental Figure S1

1H NMR spectra of (a) ABRS, (b) CM-ABRS and 13C NMR spectra of (c) ABRS, (d) CM-ABRS. (GIF 74 kb).

12249_2017_824_MOESM1_ESM.tif (13.1 mb)
High Resolution Image (TIFF 13414 kb).
12249_2017_824_Fig10_ESM.gif (59 kb)
Supplemental Figure S2

Fluorescence spectra of DOX (120 μg/4.5 mL DDW) incubated with increasing amounts of ABRS. (GIF 59 kb).

12249_2017_824_MOESM2_ESM.tif (9.4 mb)
High Resolution Image (TIFF 9613 kb).
12249_2017_824_Fig11_ESM.gif (80 kb)
Supplemental Figure S3

FT-IR spectrum of DOX-ABRS complex. (GIF 79 kb).

12249_2017_824_MOESM3_ESM.tif (10.6 mb)
High Resolution Image (TIFF 10811 kb).

References

  1. 1.
    Biliaderis CG. The structure and interactions of starch with food constituents. Can J Physiol Pharmacol. 1991;69(1):60–78.CrossRefPubMedGoogle Scholar
  2. 2.
    Wurzburg OB. Modified starches-properties and uses. Boca Raton: CRC Press Inc.; 1986.Google Scholar
  3. 3.
    Demirgöz D, Elvira C, Mano JF, Cunha AM, Piskin E, Reis RL. Chemical modification of starch based biodegradable polymeric blends: effects on water uptake, degradation behaviour and mechanical properties. Polym Degrad Stab. 2000;70(2):161–70.CrossRefGoogle Scholar
  4. 4.
    Dumoulin Y, Cartilier LH, Mateescu MA. Cross-linked amylose tablets containing α-amylase: an enzymatically-controlled drug release system. J Control Release. 1999;60(2):161–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Kost J, Shefer S. Chemically-modified polysaccharides for enzymatically-controlled oral drug delivery. Biomaterials. 1990;11(9):695–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Lenaerts V, Dumoulin Y, Mateescu MA. Controlled release of theophylline from cross-linked amylose tablets. J Control Release. 1991;15(1):39–46.CrossRefGoogle Scholar
  7. 7.
    Korhonen O, Raatikainen P, Harjunen P, Nakari J, Suihko E, Peltonen S, et al. Starch acetates—multifunctional direct compression excipients. Pharm Res. 2000;17(9):1138–43.CrossRefPubMedGoogle Scholar
  8. 8.
    Bhattacharyya D, Singhal RS, Kulkarni PR. Physicochemical properties of carboxymethyl starch prepared from corn and waxy amaranth starch. Carbohydr Polym. 1995;27(3):167–9.CrossRefGoogle Scholar
  9. 9.
    Grote C, Lazik W, Heinze T. Tartaric acid starch ether: a novel biopolymer-based polyelectrolyte. Macromol Rapid Commun. 2003;24(16):927–31.CrossRefGoogle Scholar
  10. 10.
    Mallick N, Anwar M, Asfer M, Mehdi SH, Rizvi MMA, Panda AK, et al. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride. Carbohydrate Polymers. 2016.Google Scholar
  11. 11.
    Syed M, Skonberg C, Hansen SH. Effect of some organic solvents on oxidative phosphorylation in rat liver mitochondria: choice of organic solvents. Toxicol In Vitro. 2013;27(8):2135–41.CrossRefPubMedGoogle Scholar
  12. 12.
    Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004;58(2):327–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Ahmad MZ, Akhter S, Ahmad I, Rahman M, Anwar M, Jain GK, et al. Development of polysaccharide based colon targeted drug delivery system: design and evaluation of Assam Bora rice starch based matrix tablet. Curr Drug Deliv. 2011;8(5):575–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Zaki Ahmad M, Akhter S, Anwar M, Singh A, Ahmad I, Ruhal Ain M, et al. Feasibility of Assam Bora rice starch as a compression coat of 5-fluorouracil core tablet for colorectal cancer. Curr Drug Deliv. 2012;9(1):105–10.CrossRefGoogle Scholar
  15. 15.
    Ahmad MZ, Akhter S, Anwar M, Kumar A, Rahman M, Talasaz AH, et al. Colorectal cancer targeted Irinotecan-Assam Bora rice starch based microspheres: a mechanistic, pharmacokinetic and biochemical investigation. Drug Dev Ind Pharm. 2013;39(12):1936–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Sharma HK, Lahkar S, Kanta NL. Formulation and in vitro evaluation of metformin hydrochloride loaded microspheres prepared with polysaccharide extracted from natural sources. Acta Pharma. 2013;63(2):209–22.CrossRefGoogle Scholar
  17. 17.
    Ahmad MZ, Akhter S, Anwar M, Ahmad FJ. Assam Bora rice starch based biocompatible mucoadhesive microsphere for targeted delivery of 5-fluorouracil in colorectal cancer. Mol Pharm. 2012;9(11):2986–94.CrossRefPubMedGoogle Scholar
  18. 18.
    Ahmad MZ, Akhter S, Ahmad I, Singh A, Anwar M, Shamim M, et al. In vitro and in vivo evaluation of Assam Bora rice starch-based bioadhesive microsphere as a drug carrier for colon targeting. Expert Opin Drug Deliv. 2012;9(2):141–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Cortés-Funes H, Coronado C. Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol. 2007;7(2):56–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Radley JA. Starch production technology. 1976.Google Scholar
  21. 21.
    Tehkhunmag T, Kittipongpatana N, Malisuwan S, Watanageebudtra S, Kittipongpatana OS. Preparation, physicochemical and film-forming properties of carboxymethyl/hydroxypropyl dual-modified tapioca starches. CHIANG MAI UNIVERSITY JOURNAL. 2008:219.Google Scholar
  22. 22.
    Lawal OS, Lechner MD, Hartmann B, Kulicke WM. Carboxymethyl cocoyam starch: synthesis, characterisation and influence of reaction parameters. Starch-Stärke. 2007;59(5):224–33.CrossRefGoogle Scholar
  23. 23.
    Singh J, Kaur L, McCarthy O. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—a review. Food Hydrocoll. 2007;21(1):1–22.CrossRefGoogle Scholar
  24. 24.
    Stojanović Ž, Jeremić K, Jovanović S, Lechner MD. A comparison of some methods for the determination of the degree of substitution of carboxymethyl starch. Starch-Stärke. 2005;57(2):79–83.CrossRefGoogle Scholar
  25. 25.
    Nattapulwat N, Purkkao N, Suwithayapan O. Preparation and application of carboxymethyl yam (Dioscorea esculenta) starch. AAPS PharmSciTech. 2009;10(1):193–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kittipongpatana OS, Sirithunyalug J, Laenger R. Preparation and physicochemical properties of sodium carboxymethyl mungbean starches. Carbohydr Polym. 2006;63(1):105–12.CrossRefGoogle Scholar
  27. 27.
    das Neves J, Bahia MF, Amiji MM, Sarmento B. Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin Drug Deliv. 2011;8(8):1085–104.CrossRefPubMedGoogle Scholar
  28. 28.
    Xiao H, Stefanick JF, Jia X, Jing X, Kiziltepe T, Zhang Y, et al. Micellar nanoparticle formation via electrostatic interactions for delivering multinuclear platinum (II) drugs. Chem Commun. 2013;49(42):4809–11.CrossRefGoogle Scholar
  29. 29.
    Li M, Song W, Tang Z, Lv S, Lin L, Sun H, et al. Nanoscaled poly (L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl Mater Interfaces. 2013;5(5):1781–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Bagalkot V, Farokhzad OC, Langer R, Jon S. An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed. 2006;45(48):8149–52.CrossRefGoogle Scholar
  31. 31.
    Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Kayal S, Ramanujan R. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C. 2010;30(3):484–90.CrossRefGoogle Scholar
  33. 33.
    Mallick N, Anwar M, Asfer M, Mehdi SH, Rizvi MMA, Panda AK, et al. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride. Carbohydr Polym. doi: 10.1016/j.carbpol.2016.05.102.
  34. 34.
    Zhou X, Yang J, Qu G. Study on synthesis and properties of modified starch binder for foundry. J Mater Process Technol. 2007;183(2):407–11.CrossRefGoogle Scholar
  35. 35.
    Kondo T. The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose. 1997;4(4):281–92.CrossRefGoogle Scholar
  36. 36.
    Ahmad FB, Williams PA, Doublier J-L, Durand S, Buleon A. Physico-chemical characterisation of sago starch. Carbohydr Polym. 1999;38(4):361–70.CrossRefGoogle Scholar
  37. 37.
    Pushpamalar V, Langford SJ, Ahmad M, Lim YY. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr Polym. 2006;64(2):312–8.CrossRefGoogle Scholar
  38. 38.
    Lawal O, Lechner M, Kulicke W. Single and multi-step carboxymethylation of water yam (Dioscorea alata) starch: synthesis and characterization. Int J Biol Macromol. 2008;42(5):429–35.CrossRefPubMedGoogle Scholar
  39. 39.
    Fang J, Fowler P, Tomkinson J, Hill C. The preparation and characterisation of a series of chemically modified potato starches. Carbohydr Polym. 2002;47(3):245–52.CrossRefGoogle Scholar
  40. 40.
    Ohwada N, Ishibashi K-I, Hironaka K, Yamamoto K. Physicochemical properties of mungbean starch (received October 7, 2002; Accepted 17 May 2003). J Appl Glycosci. 2003;50(4):481–5.CrossRefGoogle Scholar
  41. 41.
    Carr RL. Evaluating flow properties of solids. 1965.Google Scholar
  42. 42.
    Okechukwu PE, Rao M. Role of granule size and size distribution in the viscosity of cowpea starch dispersions heated in excess water. J Texture Stud. 1996;27(2):159–73.CrossRefGoogle Scholar
  43. 43.
    Khalil M, Hashem A, Hebeish A. Carboxymethylation of maize starch. Starch-Stärke. 1990;42(2):60–3.CrossRefGoogle Scholar
  44. 44.
    Recovery of water-soluble salts of carboxyalkyl cellulose. Google Patents; 1944.Google Scholar
  45. 45.
    Bernert C-R, Kords C, Redeker D. Process for the purification of cellulose and starch ethers. Google Patents; 1983.Google Scholar
  46. 46.
    Tijsen C, Scherpenkate H, Stamhuis E, Beenackers A. Optimisation of the process conditions for the modification of starch. Chem Eng Sci. 1999;54(13):2765–72.CrossRefGoogle Scholar
  47. 47.
    Suzuki H, Tadokoro Y, Taketomi N. Carboxymethylation of starch by sodium monochloroacetate. Denpunkougyougakkaishi. 1961;9:33.Google Scholar
  48. 48.
    Mathew S, Abraham TE. Physico-chemical characterization of starch ferulates of different degrees of substitution. Food Chem. 2007;105(2):579–89.CrossRefGoogle Scholar
  49. 49.
    Wangsakan A, McClements DJ, Chinachoti P, Dickinson LC. Two-dimensional rotating-frame Overhauser spectroscopy (ROESY) and 13 C NMR study of the interactions between maltodextrin and an anionic surfactant. Carbohydr Res. 2004;339(6):1105–11.CrossRefPubMedGoogle Scholar
  50. 50.
    Lawal O, Lechner M, Kulicke W. The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source. Polym Degrad Stab. 2008;93(8):1520–8.CrossRefGoogle Scholar
  51. 51.
    Briffaz A, Mestres C, Escoute J, Lartaud M, Dornier M. Starch gelatinization distribution and peripheral cell disruption in cooking rice grains monitored by microscopy. J Cereal Sci. 2012;56(3):699–705.CrossRefGoogle Scholar
  52. 52.
    Beninca C, Colman TAD, Lacerda LG, Carvalho Filho MAS, Bannach G, Schnitzler E. The thermal, rheological and structural properties of cassava starch granules modified with hydrochloric acid at different temperatures. Thermochim Acta. 2013;552:65–9.CrossRefGoogle Scholar
  53. 53.
    Sangseethong K, Ketsilp S, Sriroth K. The role of reaction parameters on the preparation and properties of carboxymethyl cassava starch. Starch-Stärke. 2005;57(2):84–93.CrossRefGoogle Scholar
  54. 54.
    Wang L-F, Pan S-Y, Hu H, Miao W-H, Xu X-Y. Synthesis and properties of carboxymethyl kudzu root starch. Carbohydr Polym. 2010;80(1):174–9.CrossRefGoogle Scholar
  55. 55.
    Liu D, Wu Q, Chen H, Chang PR. Transitional properties of starch colloid with particle size reduction from micro-to nanometer. J Colloid Interface Sci. 2009;339(1):117–24.CrossRefPubMedGoogle Scholar
  56. 56.
    Lawal OS. Succinyl and acetyl starch derivatives of a hybrid maize: physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry. Carbohydr Res. 2004;339(16):2673–82.CrossRefPubMedGoogle Scholar
  57. 57.
    Chen J, Jane J. Properties of granular cold-water-soluble starches prepared by alcoholic-alkaline treatments. Cereal Chem. 1994;71(6):623–6.Google Scholar
  58. 58.
    Mishra S, Rai T. Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocoll. 2006;20(5):557–66.CrossRefGoogle Scholar
  59. 59.
    Agboola S, Akingbala J, Oguntimein G. Physicochemical and functional properties of low DS cassava starch acetates and citrates. Starch-Stärke. 1991;43(2):62–6.CrossRefGoogle Scholar
  60. 60.
    Steeneken P. Rheological properties of aqueous suspensions of swollen starch granules. Carbohydr Polym. 1989;11(1):23–42.CrossRefGoogle Scholar
  61. 61.
    Jane J-L, Xu A, Radosavljevic M, Seib P. Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem. 1992;69(4):405–9.Google Scholar
  62. 62.
    Biliaderis C. Structures and phase transitions of starch polymers. ChemInform. 1998;29(47).Google Scholar
  63. 63.
    Whittenberger R, Nutting G. Potato-starch gels. Ind Eng Chem. 1948;40(8):1407–13.CrossRefGoogle Scholar
  64. 64.
    Builders PF, Arhewoh MI. Pharmaceutical applications of native starch in conventional drug delivery. Starch-Stärke. 2016.Google Scholar
  65. 65.
    Manocha B, Margaritis A. Controlled release of doxorubicin from doxorubicin/γ-polyglutamic acid ionic complex. J Nanomater. 2010;2010:12.CrossRefGoogle Scholar
  66. 66.
    Lv S, Li M, Tang Z, Song W, Sun H, Liu H, et al. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater. 2013;9(12):9330–42.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang L, Zhang P, Zhao Q, Zhang Y, Cao L, Luan Y. Doxorubicin-loaded polypeptide nanorods based on electrostatic interactions for cancer therapy. J Colloid Interface Sci. 2016;464:126–36.CrossRefPubMedGoogle Scholar
  68. 68.
    Movagharnezhad N, Moghadam PN. Folate-decorated carboxymethyl cellulose for controlled doxorubicin delivery. Colloid Polym Sci. 2016;294(1):199–206.CrossRefGoogle Scholar
  69. 69.
    Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TAT, Zakaria ZAB. In vitro delivery and controlled release of doxorubicin for targeting osteosarcoma bone cancer. Molecules. 2013;18(9):10580–98.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Sharmistha Mohapatra
    • 1
    • 2
    Email author
  • Anees Ahmad Siddiqui
    • 1
    Email author
  • Mohammed Anwar
    • 2
  • Neha Bhardwaj
    • 2
  • Sohail Akhter
    • 3
  • Farhan Jalees Ahmad
    • 2
  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyJamia Hamdard (Hamdard University)New DelhiIndia
  2. 2.Nanoformulation Research Laboratory, Faculty of PharmacyHamdard UniversityNew DelhiIndia
  3. 3.LE STUDIUM® Loire Valley Institute for Advanced StudiesOrléansFrance

Personalised recommendations