Advertisement

AAPS PharmSciTech

, Volume 19, Issue 1, pp 93–100 | Cite as

Determination of Degradation Kinetics and Effect of Anion Exchange Resin on Dissolution of Novel Anticancer Drug Rigosertib in Acidic Conditions

  • Hardikkumar H. Patel
  • Manoj Maniar
  • Chen Ren
  • Rutesh H. DaveEmail author
Research Article
  • 273 Downloads

Abstract

Rigosertib is a novel anticancer drug in clinical development by Onconova therapeutics, Inc. Currently, it is in pivotal phase III clinical trials for myelodysplastic syndrome (MDS) patients. Chemically, it is a sodium salt of weak acid with low solubility in lower pH solutions. In the preliminary studies, it was found that rigosertib is unstable in acidic conditions and forms multiple degradation products. In this research, drug degradation kinetics of rigosertib were studied in acidic conditions. Rigosertib follows pseudo-first-order general acid catalysis reaction. Cholestyramine, which is a strong anion exchange resin, was used to form complex with drug to improve stability and dissolution in acidic conditions. Drug complex with cholestyramine showed better dissolution profile compared to drug alone. Effect of polyethylene glycol was investigated on the release of drug from the drug resin complex. Polyethylene glycol further improved dissolution profile by improving drug solubility in acidic medium.

KEY WORDS

Rigosertib Drug degradation Ion exchange resin (IER) Cholestyramine Dissolution 

Notes

Acknowledgements

The authors are thankful to the Onconova Therapeutics, Inc. for providing resources and Division of Pharmaceutical Sciences, Long Island University for providing an opportunity to conduct the above research.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Chun AW, Cosenza SC, Taft DR, Maniar M. Preclinical pharmacokinetics and in vitro activity of ON 01910.Na, a novel anti-cancer agent. Cancer Chemother Pharmacol. 2009;65(1):177–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Gumireddy K, Reddy MVR, Cosenza SC, Nathan RB, Baker SJ, Papathi N, et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 2005;7(3):275–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Li J, Zhao M, Jimeno A, He P, Ramana Reddy MV, Hidalgo M, et al. Validation and implementation of a liquid chromatography/tandem mass spectrometry assay to quantitate ON 01910.Na, a mitotic progression modulator, in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;856(1–2):198–204.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    List AF. New therapeutics for myelodysplastic syndromes. Leuk Res. 2012;36(12):1470–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Seetharam M, Fan AC, Tran M, Xu L, Renschler JP, Felsher DW, et al. Treatment of higher risk myelodysplastic syndrome patients unresponsive to hypomethylating agents with ON 01910.Na. Leuk Res. 2012;36(1):98–103.CrossRefPubMedGoogle Scholar
  6. 6.
    Sparreboom A, de Jonge MJ, Verweij J. The use of oral cytotoxic and cytostatic drugs in cancer treatment. Eur J Cancer. 2002;38(1):18–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Ismael GFV, Rosa DD, Mano MS, Awada A. Novel cytotoxic drugs: old challenges, new solutions. Cancer Treat Rev. 2008;34(1):81–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Kurtz J-E, Andrès E, Natarajan-Amé S, Noel E, Dufour P. Oral chemotherapy in colorectal cancer treatment: review of the literature. Eur J Intern Med. 2003;14(1):18–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Sharma S, Saltz LB. Oral chemotherapeutic agents for colorectal cancer. Oncologist. 2000;5(2):99–107.CrossRefPubMedGoogle Scholar
  10. 10.
    DeMario MD, Ratain MJ. Oral chemotherapy: rationale and future directions. J Clin Oncol. 1998;16(7):2557–67.CrossRefPubMedGoogle Scholar
  11. 11.
    Gore M, Oza A, Rustin G, Malfetano J, Calvert H, Clarke-Pearson D, et al. A randomised trial of oral versus intravenous topotecan in patients with relapsed epithelial ovarian cancer. Eur J Cancer. 2002;38(1):57–63.CrossRefPubMedGoogle Scholar
  12. 12.
    Von Pawel J, Gatzemeier U, Pujol JL, Moreau L, Bildat S, Ranson M, et al. Phase II comparator study of oral versus intravenous topotecan in patients with chemosensitive small-cell lung cancer. J Clin Oncol. 2001;19(6):1743–9.CrossRefGoogle Scholar
  13. 13.
    Liu G, Franssen E, Fitch MI, Warner E. Patient preferences for oral versus intravenous palliative chemotherapy. J Clin Oncol. 1997;15(1):110–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Schellens JHM, Malingré MM, Kruijtzer CMF, Bardelmeijer HA, van Tellingen O, Schinkel AH, et al. Modulation of oral bioavailability of anticancer drugs: from mouse to man. Eur J Pharm Sci. 2000;12(2):103–10.CrossRefPubMedGoogle Scholar
  15. 15.
    Meerum Terwogt JM, Beijnen JH, Ten Bokkel Huinink WW, Rosing H, Schellens JHM. Co-administration of cyclosporin enables oral therapy with paclitaxel. Lancet. 1998;352(9124):285.CrossRefPubMedGoogle Scholar
  16. 16.
    Stuuurman F, Nuijen B, Beijnen JH, Schellens JH. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet. 2013;52(6):399–414.CrossRefGoogle Scholar
  17. 17.
    Lin S-Y, Wang S-L. Advances in simultaneous DSC–FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples. Adv Drug Deliv Rev. 2012;64(5):461–78.CrossRefPubMedGoogle Scholar
  18. 18.
    Verschraegen CF, Natelson EA, Giovanella BC, Kavanagh JJ, Kudelka AP, Freedman RS, et al. A phase I clinical and pharmacological study of oral 9- nitrocamptothecin, a novel water-insoluble topoisomerase I inhibitor. Anti-Cancer Drugs. 1998;9(1):36–44.CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang Y, Jiang X, Law K, Chen Y, Gu J, Zhang W, et al. Enhanced anti-tumor effect of 9-nitro-camptothecin complexed by hydroxypropyl-β-cyclodextrin and safety evaluation. Int J Pharm. 2011;415(1–2):252–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Beisler JA. Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem. 1978;21(2):204–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Anand V, Kandarapu R, Garg S. Ion-exchange resins: carrying drug delivery forward. Drug Discov Today. 2001;6(17):905–14.CrossRefPubMedGoogle Scholar
  22. 22.
    Agarwal R, Mittal R, Singh A. Studies of ion-exchange resin complex of chloroquine phosphate. Drug dev Ind Pharm. 2000;26(7):773–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Guo X, Chang RK, Hussain MA. Ion-exchange resins as drug delivery carriers. J Pharm Sci. 2009;98(11):3886–902.CrossRefPubMedGoogle Scholar
  24. 24.
    NK J. Advance drug delivery systems. 2005;1st edition:290–302.Google Scholar
  25. 25.
    Irwin WJ, Machale R, Watts PJ. Drug-delivery by ion-exchange. Part VII: release of acidic drugs from anionic exchange resinate complexes. Drug Dev Ind Pharm. 1990;16(6):883–98.CrossRefGoogle Scholar
  26. 26.
    Dave RH, Patel AD, Donahue E, Patel HH. To evaluate the effect of addition of an anionic surfactant on solid dispersion using model drug indomethacin. Drug Dev Ind Pharm. 2012;38(8):930–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Völgyi G, Baka E, Box KJ, Comer JEA, Takács-Novák K. Study of pH-dependent solubility of organic bases. Revisit of Henderson-Hasselbalch relationship. Anal Chim Acta. 2010;673(1):40–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Khan MN, Kuliya-Umar AF. Kinetics and mechanism of general acid-catalysed thiolytic cleavage of 9-anilinoacridine. Bioorg Med Chem. 1995;3(5):891–0.Google Scholar
  29. 29.
    Dave RH, Patel AD, Donahue E, Patel HH. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole. Drug Dev Ind Pharm. 2013;39(10):1562–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Zeng HX, Wang M, Jia F, Lin SJ, Cheng G, Pan WS. Preparation and in vitro release of dual-drug resinate complexes containing codeine and chlorpheniramine. Drug dev Ind Pharm. 2011;37(2):201–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Puttewar TY, Kshirsagar MD, Chandewar AV, Chikhale RV. Formulation and evaluation of orodispersible tablet of taste masked doxylamine succinate using ion exchange resin. J King Saud Univ - Sci. 2010;22(4):229–40.CrossRefGoogle Scholar
  32. 32.
    Liu Z, Chen B, Gao D, Rao MS, Usayapant A. Polymer coated drug-ion exchange resins and methods. Patent PCT/US2007/085113. 2008.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Hardikkumar H. Patel
    • 1
  • Manoj Maniar
    • 2
  • Chen Ren
    • 2
  • Rutesh H. Dave
    • 1
    Email author
  1. 1.Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health SciencesLong Island UniversityBrooklynUSA
  2. 2.Onconova Therapeutics, Inc.NewtownUSA

Personalised recommendations