Skip to main content
Log in

Microencapsulation of β-Carotene Based on Casein/Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon: an Approach to Enhance Photo-stability and Retention of Functionality

  • Research Article
  • Theme: Preparation of Nano and Micro-structures for Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

β-Carotene, abundant majorly in carrot, pink guava yams, spinach, kale, sweet potato, and palm oil, is an important nutrient for human health due to its scavenging action upon reactive free radicals wherever produced in the body. Inclusion of liposoluble β-carotene in foods and food ingredients is a challenging aspect due to its labile nature and low absorption from natural sources. This fact has led to the application of encapsulation of β-carotene to improve stability and bioavailability. The present work was aimed to fabricate microcapsules (MCs) of β-carotene oily dispersion using the complex coacervation technique with casein (CA) and guar gum (GG) blend. The ratio of CA:GG was found to be 1:0.5 (w/v) when optimized on the basis of zeta potential-yield stress phenomenon. These possessed a higher percentage yield (71.34 ± 0.55%), lower particle size (176.47 ± 4.65 μm), higher encapsulation efficiency (65.95 ± 5.33%), and in general, a uniform surface morphology was observed with particles showing optimized release behavior. Prepared MCs manifested effective and controlled release (up to 98%) following zero-order kinetics which was adequately explained by the Korseymer-Peppas model. The stability of the freeze-dried MCs was established in simulated gastrointestinal fluids (SGF, SIF) for 8 h. Antioxidant activity of the MCs was studied and revealed the retention of the functional architecture of β-carotene in freeze-dried MCs. Minimal photolytic degradation upon encapsulation of β-carotene addressed the challenge regarding photo-stability of β-carotene as confirmed via mass spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Franceschi E, De Cezaro A, Ferreira SRS, Kunita MH, Edvani C, Rubira AF, et al. Co-precipitation of beta-carotene and bio-polymer using supercritical carbon dioxide as antisolvent. Open Chem Eng J. 2010;4:11–20.

    Article  CAS  Google Scholar 

  2. Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US. Microencapsulation by complex coacervation using whey protein isolates and gum acacia: an approach to preserve the functionality and controlled release of β-carotene. Food Bioprocess Technol. 2015;8:1635–44.

    Article  CAS  Google Scholar 

  3. Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. Int J Biol Macromol. 2016;87:101–13.

    Article  CAS  PubMed  Google Scholar 

  4. Maiani G, Caston MJP, Catasta G, Toti E, Cambrodon IG, Bysted A, et al. Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res. 2009;53:194–218.

    Article  Google Scholar 

  5. Boon CS, McClements DJ, Weiss J, Decker EA. Role of iron and hydroperoxides in the degradation of lycopene in oil-in-water emulsions. J Agric Food Chem. 2009;57:2993–8.

    Article  CAS  PubMed  Google Scholar 

  6. Cerezo J, Zu J, Bastida A, Requena A, Pedro J, Cedex N, et al. Antioxidant properties of β-carotene isomers and their role in photosystems: insights from ab initio simulations. J Phys Chem A. 2012:3498–506.

  7. Hentschel A, Gramdorf S, Muller RH, Kurz T. β-Carotene-loaded nanostructured lipid carriers. J. Food Sci. 2008;73:1–6.

    Article  Google Scholar 

  8. Tsung J, Burgess DJ. Fundamentals and applications of controlled release drug delivery. Fundam Appl Control Release Drug Deliv. 2012:107–23.

  9. Jain A, Garg NK, Jain A, Kesharwani P, Jain AK, Nirbhavane P, et al. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev Ind Pharm. 2016;42:897–905.

    Article  CAS  PubMed  Google Scholar 

  10. Gattani YS. Floating multiparticulate drug delivery systems: an overview systems drug factors affecting. Int J Pharma Bio Sci. 2010;1:1–14.

    Google Scholar 

  11. Huang YI, Cheng YH, Yu CC, Tsai TR, Cham TM. Microencapsulation of extract containing shikonin using gelatin-acacia coacervation method: a formaldehyde-free approach. Colloids Surf B Biointerfaces. 2007;58:290–7.

    Article  CAS  PubMed  Google Scholar 

  12. Hsieh W-C, Chang C-P, Gao Y-L. Controlled release properties of chitosan encapsulated volatile citronella oil microcapsules by thermal treatments. Colloids Surf B Biointerfaces. 2006;53:209–14.

    Article  CAS  PubMed  Google Scholar 

  13. Shukla R, Gupta J, Shukla P, Dwivedi P, Tripathi P, Bhattacharya SM, et al. Chitosan coated alginate micro particles for the oral delivery of antifilarial drugs and combinations for intervention in Brugia malayi induced lymphatic filariasis. RSC Adv. 2015;5:69047–56.

    Article  CAS  Google Scholar 

  14. Choudhary S, Jain A, Amin MCIM, Mishra V, Agrawal GP, Kesharwani P. Stomach specific polymeric low density microballoons as a vector for extended delivery of rabeprazole and amoxicillin for treatment of peptic ulcer. Colloids Surf B Biointerfaces. 2016;141:268–77.

    Article  CAS  PubMed  Google Scholar 

  15. Jain A, Thakur D, Ghoshal G, Katare OP, Singh B, Shivhare US. Formation and functional attributes of electrostatic complexes involving casein and anionic polysaccharides: an approach to enhance oral absorption of lycopene in rats in vivo. Int J Biol Macromol. 2016;93:746–56.

    Article  CAS  PubMed  Google Scholar 

  16. Rocha GA, Fávaro-Trindade CS, Grosso CRF. Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food Bioprod Process. 2012;90:37–42.

    Article  Google Scholar 

  17. Dewettinck K, Huyghebaert A. Fluidized bed coating in food technology. Trends Food Sci Technol. 1999;10:163–8.

    Article  CAS  Google Scholar 

  18. Mehta P, Haj-Ahmad R, Rasekh M, Arshad MS, Smith A, van der Merwe SM, et al. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discov Today. 2017;22:157–65.

    Article  CAS  PubMed  Google Scholar 

  19. Azmin M, Harfield C, Ahmad Z, Edirisinghe M, Stride E. How do microbubbles and ultrasound interact? Basic physical, dynamic and engineering principles. Curr Pharm Des. 2012;18:2118–34.

    Article  CAS  PubMed  Google Scholar 

  20. Dubey R, Shami TC, Rao KUB. Microencapsulation Technology and Applications. 2009;59:82–95.

    CAS  Google Scholar 

  21. Baracat MM, Nakagawa AM, Casagrande R, Georgetti SR, Verri WA, Freitas O. Preparation and characterization of microcapsules based on biodegradable polymers: pectin/casein complex for controlled drug release systems. AAPS Pharm Sci Tech. 2012;13:364–72.

    Article  CAS  Google Scholar 

  22. Yuan Y, Chesnutt BM, Utturkar G, Haggard WO, Yang Y, Ong JL, et al. The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr Polym. 2007;68:561–7.

    Article  CAS  Google Scholar 

  23. Muzzarelli RA. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym. 2009;77:1–9.

    Article  CAS  Google Scholar 

  24. Muhamad II, Fen LS, Hui NH, Mustapha NA. Genipin-cross-linked kappa-carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydr Polym. 2011;83:1207–12.

    Article  CAS  Google Scholar 

  25. Loksuwan J. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca. Food Hydrocoll. 2007;21:928–35.

    Article  CAS  Google Scholar 

  26. Laos K, Lougas T, Mandmets A, Vokk R. Encapsulation of β-carotene from sea buckthorn (Hippophae rhamnoides L.) juice in furcellaran beads—abstract—Europe PMC. Innov Food Sci Emerg Technol. 2007;8:395–8.

    Article  CAS  Google Scholar 

  27. Han J, Guenier A-S, Salmieri S, Lacroix M. Alginate and chitosan functionalization for micronutrient encapsulation. J Agric Food Chem. 2008;56:2528–35.

    Article  CAS  PubMed  Google Scholar 

  28. Chenlo F, Moreira R, Silva C. Steady-shear flow of semidilute guar gum solutions with sucrose, glucose and sodium chloride at different temperatures. J Food Eng. 2011;107:234–40.

    Article  CAS  Google Scholar 

  29. Akifuddin SK, Abbas Z, Marihal S, Ranadev AK, SKI H, Kulkarni R. Preparation, characterization and in-vitro evaluation of microcapsules for controlled release of diltiazem hydrochloride by ionotropic gelation technique. J Appl Pharm Sci. 2013;3:35–42.

    Google Scholar 

  30. Carvalho AGS, Silva VM, Hubinger MD. Microencapsulation by spray drying of emulsified green coffee oil with two-layered membranes. Food Res Int. 2014;61:236–45.

    Article  CAS  Google Scholar 

  31. Jain A, Agarwal A, Majumder S, Lariya N, Khaya A, Agrawal H, et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release. 2010;148:359–67.

    Article  CAS  PubMed  Google Scholar 

  32. Gao Y, Zuo J, Bou Chacra N, Pinto TDJA, Clas SD, Walker RB, et al. In vitro release kinetics of antituberculosis drugs from nanoparticles assessed using a modified dissolution apparatus. Biomed Res Int. 2013;2013:1–9.

    Google Scholar 

  33. Lobo MS, Costa P. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  Google Scholar 

  34. Stippler E, Kopp S, Dressman J. Pharmacopeia simulated intestinal fluid TS (without pancreatin) and phosphate standard buffer pH 6.8, TS of the International Pharmacopoeia with respect. Dissolution Technol 2004;6–10.

  35. Jain AK, Thanki K, Jain S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol Pharm. 2013;10:3459–74.

    Article  CAS  PubMed  Google Scholar 

  36. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7.

    Article  CAS  PubMed  Google Scholar 

  37. Boiero ML, Mandrioli M, Vanden Braber N, Rodriguez Estrada MT, Garcia NA, Borsarelli CD, et al. Gum arabic microcapsules as protectors of the photoinduced degradation of riboflavin in whole milk. J Dairy Sci. 2014;97:1–9.

    Article  Google Scholar 

  38. Struszczzyk MH. Chitin and chitosan. In: Polimery. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2002.

  39. Silva DF, Favaro Trindade CS, Rocha GA, Thomazini M. Microencapsulation of lycopene by gelatin-pectin complex coacervation. J Food Process Preserv. 2012;36:185–90.

    Article  CAS  Google Scholar 

  40. Chatterjee S, Salaün F, Campagne C. Development of multilayer microcapsules by a phase coacervation method based on ionic interactions for textile applications. Pharmaceutics. 2014;6:281–97.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kizilay E, Kayitmazer AB, Dubin PL. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv Colloid Interf Sci. 2011;167:24–37.

    Article  CAS  Google Scholar 

  42. Espinosa-Andrews H, Enriquez-Ramirez KE, Garcia-Marquez E, Ramirez-Santiago C, Lobato-Calleros C, Vernon-Carter J. Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes. Carbohydr Polym. 2013;95:161–6.

    Article  CAS  PubMed  Google Scholar 

  43. Benyounes K. Rheological and electrokinetic properties of carboxymethylcellulose-water dispersions in the presence of salts. Int J Phys Sci. 2012;7:1790–8.

    CAS  Google Scholar 

  44. Merino AIG, Hernandez FJR, Navarro JFV, Rosales FJG, Fortes QP. Correlation between rheological parameters and some colloidal properties of anatase dispersions. Annu Trans Nord Rheol Soc. 2007;15:1–6.

    Google Scholar 

  45. Xiao Z, Li W, Zhu G. Effect of wall materials and core oil on the formation and properties of styralyl acetate microcapsules prepared by complex coacervation. Colloid Polym Sci. 2015;293:1339–48.

    Article  CAS  Google Scholar 

  46. Coppi G, Iannuccelli V. Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system. Int J Pharm. 2009;367:127–32.

    Article  CAS  PubMed  Google Scholar 

  47. Xu F, Yan T-T, Luo Y-L. Synthesis and micellization of thermosensitive PNIPAAm-b-PLA amphiphilic block copolymers based on a bifunctional initiator. Macromol Res. 2011;19:1287–95.

    Article  CAS  Google Scholar 

  48. Wei H, Wu D-Q, Li Q, Chang C, Zhou J-P, Zhang X-Z, et al. Preparation of shell cross-linked Thermoresponsive micelles as well as hollow spheres based on P(NIPAAm-co-HMAAm-co-MPMA)-b-PCL. J Phys Chem C. 2008;112:15329–34.

    Article  CAS  Google Scholar 

  49. Jain A, Kesharwani P, Garg NK, Jain A, Jain SA, Jain AK, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf B Biointerfaces. 2015;134:47–58.

    Article  CAS  PubMed  Google Scholar 

  50. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.

    Article  CAS  PubMed  Google Scholar 

  51. Drusch S, Berg S, Scampicchio M, Serfert Y, Somoza V, Mannino S, et al. Role of glycated caseinate in stabilisation of microencapsulated lipophilic functional ingredients. Food Hydrocoll. 2009;23:942–8.

    Article  CAS  Google Scholar 

  52. Veerapratap S, Prabhakar MN, Chandrasekhar M, Kumarababu P, Maruthi Y. Preparation of biodegradable polymeric blend microspheres of soy protein isolate/guar gum and release studies of tolterodine drug. Indian Journal of Advances in Chemical Science. 2015:171–7.

  53. Arifin DY, Lee LY, Wang C-H. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev. 2006;58:1274–325.

    Article  CAS  PubMed  Google Scholar 

  54. Lu B, Wen R, Yang H, He Y. Sustained-release tablets of indomethacin-loaded microcapsules: preparation, in vitro and in vivo characterization. Int J Pharm 2007;333:87–94.

  55. Dash V, Mishra SK, Singh M, Goyal AK, Rath G. Release kinetic studies of aspirin microcapsules from ethyl cellulose, cellulose acetate phthalate and their mixtures by emulsion solvent evaporation method. Sci Pharm. 2010;78:93–101.

    Article  CAS  PubMed  Google Scholar 

  56. Tan C, Xue J, Abbas S, Feng B, Zhang X, Xia S. Liposome as a delivery system for carotenoids: comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. J Agric Food Chem. 2014;62:6726–35.

    Article  CAS  PubMed  Google Scholar 

  57. Jain A, Kesharwani P, Garg NK, Jain A, Nirbhavane P, Ghanghoria R, et al. Nano-constructed carriers loaded with antioxidant: boon for cardiovascular system. Curr Pharm Des. 2015;21:4456–64.

    Article  CAS  PubMed  Google Scholar 

  58. Mueller L, Boehm V. Antioxidant activity of beta-carotene compounds in different in vitro assays. Molecules. 2011;16:1055–69.

    Article  PubMed  Google Scholar 

  59. El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys. 2004;430:37–48.

    Article  CAS  PubMed  Google Scholar 

  60. Böhm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ. Trolox equivalent antioxidant capacity of different geometrical isomers of alpha-carotene, beta-carotene, lycopene, and zeaxanthin. J Agric Food Chem. 2002;50:221–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Indian Council of Agriculture and Research, New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Ghoshal.

Additional information

Guest Editors: Dr. Z Ahmad and Prof. M Edirisinghe

Electronic supplementary material

ESM 1

SI Fig. 1 Structure elucidation of the degraded product, analyzed by MS spectroscopy on the first and fifth day (JPEG 129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, D., Jain, A., Ghoshal, G. et al. Microencapsulation of β-Carotene Based on Casein/Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon: an Approach to Enhance Photo-stability and Retention of Functionality. AAPS PharmSciTech 18, 1447–1459 (2017). https://doi.org/10.1208/s12249-017-0806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0806-1

KEY WORDS

Navigation