Development of Cordycepin Formulations for Preclinical and Clinical Studies

ABSTRACT

There is extensive literature on in vivo studies with cordycepin, but these studies were generally conducted without validation of the various formulations, especially in terms of the solubility of cordycepin in the dosing vehicles used. Cordycepin is a promising drug candidate in multiple therapeutic areas, and there is a growing interest in studies aimed at assessing the pharmacological activity of this compound in relevant animal disease models. It is likely that many reported in vivo studies used formulations in which cordycepin was incompletely soluble. This can potentially confound the interpretation of pharmacokinetics and efficacy results. Furthermore, the presence of particles in intravenously administered suspension can cause adverse effects and should be avoided. Here, we present the results from our development of simple and readily applicable formulations of cordycepin based on quantitative solubility assessment. Homogeneous solutions of cordycepin were prepared in phosphate-buffered saline (PBS) at different pH levels, suitable as formulations for both intravenously and oral administration. For the purpose of high-dose oral administration, we also developed propylene glycol (PPG)-based vehicles in which cordycepin is completely soluble. The stability of the newly developed formulations was also assessed, as well as the feasibility of their sterilisation by filtration. Additionally, an HPLC-UV method for the determination of cordycepin in the formulations, which may also be useful for other purposes, was developed and validated. Our study could provide useful information for improvement of future preclinical and clinical studies involving cordycepin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

REFERENCES

  1. 1.

    Nakamura K, Shinozuka K, Yoshikawa N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J Pharmacol Sci. 2015;127(1):53–6.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Tuli HS, Sharma AK, Sandhu SS, Kashyap D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci. 2013;93(23):863–9.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Kim HG, Shrestha B, Lim SY, Yoon DH, Chang WC, Shin DJ, et al. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol. 2006;545(2–3):192–9.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Tuli HS, Sandhu SS, Sharma AK. Pharmacological and therapeutic potential of Cordyceps with special reference to cordycepin. 3. Biotech. 2014;4(1):1–12.

    Google Scholar 

  5. 5.

    Lee J, Hong S, Yun J, Myoung H, Kim M. Anti-cancer effects of cordycepin on oral squamous cell carcinoma proliferation and apoptosis in vitro. J Cancer Ther. 2011;2(2):224–234.

  6. 6.

    Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK, et al. Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol In Vitro. 2011;25(4):817–24.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3. Biotech. 2012;2(1):1–15.

    Google Scholar 

  8. 8.

    Wong YY, Moon A, Duffin R, Barthet-Barateig A, Meijer HA, Clemens MJ, et al. Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J Biol Chem. 2010;285(4):2610–21.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Cho MA, Lee DS, Kim MJ, Sung JM, Ham SS. Antimutagenicity and cytotoxicity of cordycepin isolated from Cordyceps militaris. Food Sci Biotechnol. 2003;12(5):472–5.

    CAS  Google Scholar 

  10. 10.

    Nakamura K, Konoha K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, et al. Effect of cordycepin (3′-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo. 2005;19(1):137–41.

    CAS  PubMed  Google Scholar 

  11. 11.

    Yoo HS, Shin JW, Cho JH, Son CG, Lee YW, Park SY, et al. Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol Sin. 2004;25(5):657–65.

    CAS  PubMed  Google Scholar 

  12. 12.

    Sugar AM, McCaffrey RP. Antifungal activity of 3′-deoxyadenosine (cordycepin). Antimicrob Agents Chemother. 1998;42(6):1424–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Shin S, Lee S, Kwon J, Moon S, Lee S, Lee CK, et al. Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages. Immune Netw. 2009;9(3):98–105.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Jeong JW, Jin CY, Kim GY, Lee JD, Park C, Kim GD, et al. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int Immunopharmacol. 2010;10(12):1580–6.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Noh EM, Kim JS, Hur H, Park BH, Song EK, Han MK, et al. Cordycepin inhibits IL-1 beta-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology. 2009;48(1):45–8.

  16. 16.

    Lee YR, Noh EM, Jeong EY, Yun SK, Jeong YJ, Kim JH, et al. Cordycepin inhibits UVB-induced matrix metalloproteinase expression by suppressing the NF-kappa B pathway in human dermal fibroblasts. Exp Mol Med. 2009;41(8):548–54.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kondrashov A, Meijer HA, Barthet-Barateig A, Parker HN, Khurshid A, Tessier S, et al. Inhibition of polyadenylation reduces inflammatory gene induction. RNA. 2012;18(12):2236–50.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Cho HJ, Cho JY, Rhee MH, Park HJ. Cordycepin (3′-deoxyadenosine) inhibits human platelet aggregation in a cyclic AMP- and cyclic GMP-dependent manner. Eur J Pharmacol. 2007;558(1–3):43–51.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Zhou XX, Luo LP, Dressel W, Shadier G, Krumbiegel D, Schmidtke P, et al. Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis. Am J Chinese Med. 2008;36(5):967–80.

    CAS  Article  Google Scholar 

  20. 20.

    Zhou XX, Meyer CU, Schmidtke P, Zepp F. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. Eur J Pharmacol. 2002;453(2–3):309–17.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Ma L, Zhang S, Du M. Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutr Res. 2015;35(5):431–9.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    de Julian-Ortiz JV, Galvez J, Munoz-Collado C, Garcia-Domenech R, Gimeno-Cardona C. Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. J Med Chem. 1999;42(17):3308–14.

    Article  PubMed  Google Scholar 

  23. 23.

    Yoshikawa N, Nakamura K, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M. Antitumour activity of cordycepin in mice. Clin Exp Pharmacol Physiol. 2004;31(Suppl 2):S51–3.

    Article  PubMed  Google Scholar 

  24. 24.

    Pan BS, Wang YK, Lai MS, Mu YF, Huang BM. Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways. Sci Rep. 2015;5:13372.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Sato A, Yoshikawa N, Kubo E, Kakuda M, Nishiuchi A, Kimoto Y, et al. Inhibitory effect of cordycepin on experimental hepatic metastasis of B16-F0 mouse melanoma cells. In Vivo. 2013;27(6):729–32.

    CAS  PubMed  Google Scholar 

  26. 26.

    Won KJ, Lee SC, Lee CK, Lee HM, Lee SH, Fang Z, et al. Cordycepin attenuates neointimal formation by inhibiting reactive oxygen species-mediated responses in vascular smooth muscle cells in rats. J Pharmacol Sci. 2009;109(3):403–12.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Cheng Z, He W, Zhou X, Lv Q, Xu X, Yang S, et al. Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. Eur J Pharmacol. 2011;664(1–3):20–8.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Yuan J, Wang AH, He Y, Si ZH, Xu S, Zhang SC, et al. Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats. Brain Res Bull. 2016;127:171–6.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Dou C, Cao Z, Ding N, Hou TY, Luo F, Kang F, et al. Cordycepin prevents bone loss through inhibiting osteoclastogenesis by scavenging ROS generation. Forum Nutr. 2016;8(4):231.

    Google Scholar 

  30. 30.

    Zhang DW, Deng H, Qi W, Zhao GY, Cao XR. Osteoprotective effect of cordycepin on estrogen deficiency-induced osteoporosis in vitro and in vivo. Biomed Res Int. 2015;2015:423869.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wang F, Yin P, Lu Y, Zhou Z, Jiang C, Liu Y, et al. Cordycepin prevents oxidative stress-induced inhibition of osteogenesis. Oncotarget. 2015;6(34):35496–508.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sun Y, Wang YH, Qu K, Zhu HB. Beneficial effects of cordycepin on metabolic profiles of liver and plasma from hyperlipidemic hamsters. J Asian Nat Prod Res. 2011;13(6):534–46.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Du Y, Yu J, Du L, Tang J, Feng WH. Cordycepin enhances Epstein-Barr virus lytic infection and Epstein-Barr virus-positive tumor treatment efficacy by doxorubicin. Cancer Lett. 2016;376(2):240–8.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Leu SF, Poon SL, Pao HY, Huang BM. The in vivo and in vitro stimulatory effects of cordycepin on mouse leydig cell steroidogenesis. Biosci Biotechnol Biochem. 2011;75(4):723–31.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Tianzhu Z, Shihai Y, Juan D. The effects of cordycepin on ovalbumin-induced allergic inflammation by strengthening Treg response and suppressing Th17 responses in ovalbumin-sensitized mice. Inflammation. 2015;38(3):1036–43.

    Article  PubMed  Google Scholar 

  36. 36.

    Cai ZL, Wang CY, Jiang ZJ, Li HH, Liu WX, Gong LW, et al. Effects of cordycepin on Y-maze learning task in mice. Eur J Pharmacol. 2013;714(1–3):249–53.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Hu Z, Lee CI, Shah VK, Oh EH, Han JY, Bae JR, et al. Cordycepin increases nonrapid eye movement sleep via adenosine receptors in rats. Evid Based Complement Alternat Med. 2013;2013:840134.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Rottenberg ME, Masocha W, Ferella M, Petitto-Assis F, Goto H, Kristensson K, et al. Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model. J Infect Dis. 2005;192(9):1658–65.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Wei HP, Ye XL, Chen Z, Zhong YJ, Li PM, Pu SC, et al. Synthesis and pharmacokinetic evaluation of novel N-acyl-cordycepin derivatives with a normal alkyl chain. Eur J Med Chem. 2009;44(2):665–9.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Tsai YJ, Lin LC, Tsai TH. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. J Agric Food Chem. 2010;58(8):4638–43.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Nickerson DF, Weaver ML, Tse FL. The effect of oral dose volume on the absorption of a highly and a poorly water-soluble drug in the rat. Biopharm Drug Dispos. 1994;15(5):419–29.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Turner PV, Pekow C, Vasbinder MA, Brabb T. Administration of substances to laboratory animals: equipment considerations, vehicle selection, and solute preparation. J Am Assoc Lab Anim Sci. 2011;50(5):614–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hind CR. Pulmonary complications of intravenous drug misuse. 1. Epidemiology and non-infective complications. Thorax. 1990;45(11):891–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wong J, Brugger A, Khare A, Chaubal M, Papadopoulos P, Rabinow B, et al. Suspensions for intravenous (IV) injection: a review of development, preclinical and clinical aspects. Adv Drug Deliv Rev. 2008;60(8):939–54.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    U.S. Department of Health and Human Servies, Food and Drug Administration, Guidance for Industry, Analytical Procedures and Methods Validation for Drugs and Biologics. 2015.

  47. 47.

    U.S. Department of Health and Human Servies, Food and Drug Administration, Guidance for Industry, Bioanalytical Method Validation. 2001.

  48. 48.

    Thackaberry EA, Kopytek S, Sherratt P, Trouba K, McIntyre B. Comprehensive investigation of hydroxypropyl methylcellulose, propylene glycol, polysorbate 80, and hydroxypropyl-beta-cyclodextrin for use in general toxicology studies. Toxicol Sci. 2010;117(2):485–92.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Ikeda R, Nishimura M, Sun Y, Wada M, Nakashima K. Simple HPLC-UV determination of nucleosides and its application to the authentication of Cordyceps and its allies. Biomed Chromatogr. 2008;22(6):630–6.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Skeist R, Carlson G. Storing medications safely. Geriatr Nurs. 1981;2(6):429–32. 41

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    World Health Organization. Guide to good storage practices for pharmaceuticals. WHO Technical Report Series. 2003;908(Annex 9).

Download references

ACKNOWLEDGEMENTS

The research was funded by Arthritis Research UK grant 20795 awarded to CHdM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavel Gershkovich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J.B., Adrower, C., Qin, C. et al. Development of Cordycepin Formulations for Preclinical and Clinical Studies. AAPS PharmSciTech 18, 3219–3226 (2017). https://doi.org/10.1208/s12249-017-0795-0

Download citation

KEY WORDS

  • cordycepin
  • formulation
  • solubility
  • stability
  • HPLC-UV