Skip to main content

Advertisement

Log in

Formulation and Evaluation of Naringenin Nanosuspensions for Bioavailability Enhancement

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The clinical potential of naringenin (NRG) is compromised due to its poor aqueous solubility and low oral bioavailability. The study is aimed at addressing these issues by means of naringenin nanosuspensions (NRG-NS) formulated using polyvinylpyrrolidone (PVP K-90) as stabiliser via antisolvent sonoprecipitation method. Optimisation of sonication time, drug concentration and stabilisers was done based on particle size. Characterisation of pure NRG and NRG-NS was carried out by scanning electron microscopy, differential scanning calorimetry (DSC), x-ray powder diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). In vitro dissolution, intestinal absorption by non-everted rat intestinal sac model and in situ single pass intestinal perfusion techniques were performed for further investigation. Nanosuspensions prepared using PVP K-90 lead to minimum particle size (117 ± 5 nm) with zeta potential of −14.6 ± 5.6 mV. The particle size was affected by increasing sonication time, concentration of stabiliser and drug. Nanosizing process converted the crystalline drug into amorphous form as predicted from DSC and XRD patterns. FTIR demonstrated the formation of hydrogen bonds between drug and polymer. NRG-NS displayed a higher dissolution amount (91 ± 4.4% during 60 min) compared to NRG powder (42 ± 0.41%). The apparent and effective permeability of NRG-NS was increased as compared to the pure NRG. The in vivo pharmacokinetics demonstrated that the C max and AUC0–24 h values of NRG-NS were approximately 2- and 1.8-fold superior than the pure drug. Hence, overall results confirmed nanosuspensions as promising approach for NRG delivery with high absorption in gastrointestinal tract, improved dissolution and oral bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Patel K, Singh GK, Patel DK. A review on pharmacological and analytical aspects of naringenin. Chin J Integr Med. 2014;1–13.

  2. Thilakarathna SH, Rupasinghe HP. Flavonoid bioavailability and attempts for bioavailability enhancement. Forum Nutr. 2013;5(9):3367–87.

    Google Scholar 

  3. Kanaze F, Bounartzi M, Georgarakis M, Niopas I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr. 2007;61(4):472–7.

    CAS  PubMed  Google Scholar 

  4. Erlund I, Meririnne E, Alfthan G, Aro A. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J Nutr. 2001;131(2):235–41.

    CAS  PubMed  Google Scholar 

  5. Wang MJ, Chao PDL, Hou YC, Hsiu SL. Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations. J Food Drug Anal. 2006;14(3):247–53.

    CAS  Google Scholar 

  6. Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl4-induced acute liver failure. Pharm Res. 2009;26(4):893–902.

    Article  CAS  PubMed  Google Scholar 

  7. Shulman M, Cohen M, Soto-Gutierrez A, Yagi H, Wang H, Goldwasser J, Lee-Parsons CW, Benny-Ratsaby O, Yarmush ML, et al. Enhancement of naringenin bioavailability by complexation with hydroxypropoyl-Î2-cyclodextrin. PLoS One. 2011;6(4) doi:10.1371/journal.pone.0018033.

  8. Xu XR, Yu HT, Hang L, Shao Y, Ding SH, Yang XW. Preparation of naringenin/β-cyclodextrin complex and its more potent alleviative effect on choroidal neovascularization in rats. Biomed Res Int. 2014;1–9.

  9. Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv. 2015;22(4):552–61.

    Article  CAS  PubMed  Google Scholar 

  10. Semalty A, Semalty M, Singh D, Rawat MSM. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J Incl Phenom Macrocycl Chem. 2010;67(3–4):253–60.

    Article  CAS  Google Scholar 

  11. Ji P, Yu T, Liu Y, Jiang J, Xu J, Zhao Y, Hao Y, Qiu Y, Zhao W, et al. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des Dev Ther. 2016;10:911–25.

    Google Scholar 

  12. Tsai MJ, Huang YB, Fang JW, Fu YS, Wu PC. Preparation and characterization of naringenin-loaded elastic liposomes for topical application. PLoS One. 2015;10(7) doi:10.1371/journal.pone.0131026.

  13. Kanaze FI, Kokkalou E, Niopas I, Georgarakis M, Stergiou A, Bikiaris D. Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG matrixes: a comparative study. J Appl Polym Sci. 2006;102(1):460–71.

    Article  CAS  Google Scholar 

  14. Suseela P, Premkumar K, Saraswathy SD. Formulation, characterization and pharmacokinetic evaluation of naringenin-loaded gastroretentive mucoadhesive polymeric nanosystem for oral drug delivery. J drug deliv ther. 2015;5(2):107–14.

    CAS  Google Scholar 

  15. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.

    Article  CAS  PubMed  Google Scholar 

  16. Karadag A, Ozcelik B, Huang Q. Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem. 2014;62(8):1852–9.

    Article  CAS  PubMed  Google Scholar 

  17. Mauludin R, Muller RH. Preparation and storage stability of rutin nanosuspensions. J Pharm Investig. 2013;43(5):395–404.

    Article  CAS  Google Scholar 

  18. Hong C, Dang Y, Lin G, Yao Y, Li G, Ji G, Shen H, Xie Y. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation. Int J Pharm. 2014;477(1):251–60.

    Article  CAS  PubMed  Google Scholar 

  19. Mishra PR, Al Shaal L, Muller RH, Keck CM. Production and characterization of hesperetin nanosuspensions for dermal delivery. Int J Pharm. 2009;371(1):182–9.

    Article  CAS  PubMed  Google Scholar 

  20. Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  21. Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, Wang Y. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm. 2015;495(2):738–49.

    Article  CAS  PubMed  Google Scholar 

  22. Lonare AA, Patel SR. Antisolvent crystallization of poorly water soluble drugs. Int J Chem Eng Appl. 2013;4(5):337–41.

    CAS  Google Scholar 

  23. He S, Yang H, Zhang R, Li Y, Duan L. Preparation and in vitro, in vivo evaluation of teniposide nanosuspensions. Int J Pharm. 2015;478(1):131–7.

    Article  CAS  PubMed  Google Scholar 

  24. Dong Y, Ng WK, Hu J, Shen S, Tan RB. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs. Int J Pharm. 2010;386(1):256–61.

    Article  CAS  PubMed  Google Scholar 

  25. Leroueil Le Verger M, Fluckiger L, Kim YI, Hoffman M, Maincent P. Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur J Pharm Biopharm. 1998;46(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  26. Liu D, Xu H, Tian B, Yuan K, Pan H, Ma S, Yang X, Pan W. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation ultrasonication method for the improvement of dissolution rate and oral bioavailability. AAPS PharmSciTech. 2012;13(1):295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neerati P, Bedada SK. Effect of diosmin on the intestinal absorption and pharmacokinetics of fexofenadine in rats. Pharmacol Rep. 2015;67(2):339–44.

    Article  CAS  PubMed  Google Scholar 

  28. Sahu BP, Das MK. Nanosuspension for enhancement of oral bioavailability of felodipine. Appl Nanosci. 2014;4(2):189–97.

    Article  CAS  Google Scholar 

  29. Jiang T, Han N, Zhao B, Xie Y, Wang S. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev Ind Pharm. 2012;38(10):1230–9.

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Wang J, Bao Y, Guo Z, Zhang M. Rapid sonocrystallization in the salting-out process. J Cryst Growth. 2003;247(1):192–8.

    Article  CAS  Google Scholar 

  31. Belkacem N, Salem MAS, Alkhatib HS. Effect of ultrasound on the physico-chemical properties of poorly soluble drugs: antisolvent sonocrystallization of ketoprofen. Powder Technol. 2015;285:16–24.

    Article  CAS  Google Scholar 

  32. Ozaki S, Kushida I, Yamashita T, Hasebe T, Shirai O, Kano K. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs. J Pharm Sci. 2013;102(7):2273–81.

    Article  CAS  PubMed  Google Scholar 

  33. Bi Y, Liu J, Wang J, Hao J, Li F, Wang T, Sun HW, Guo F. Particle size control and the interactions between drug and stabilizers in an amorphous nanosuspension system. J Drug Deliv Sci Technol. 2015;29:167–72.

    Article  CAS  Google Scholar 

  34. Sepassi S, Goodwin D, Drake A, Holland S, Leonard G, Martini L, Lawrence M. Effect of polymer molecular weight on the production of drug nanoparticles. J Pharm Sci. 2007;96(10):2655–66.

    Article  CAS  PubMed  Google Scholar 

  35. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75.

    Article  CAS  PubMed  Google Scholar 

  36. Dong Y, Ng WK, Shen S, Kim S, Tan RB. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Int J Pharm. 2009;375(1):84–8.

    Article  CAS  PubMed  Google Scholar 

  37. Xia D, Quan P, Piao H, Piao H, Sun S, Yin Y, Cui F. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40(4):325–34.

    Article  CAS  PubMed  Google Scholar 

  38. Chen Y, Liu J, Yang X, Zhao X, Xu H. Oleanolic acid nanosuspensions: preparation, in-vitro characterization and enhanced hepatoprotective effect. J Pharm Pharmacol. 2005;57(2):259–64.

    Article  CAS  PubMed  Google Scholar 

  39. Kakran M, Sahoo NG, Li L, Judeh Z. Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technol. 2012;223:59–64.

    Article  CAS  Google Scholar 

  40. Zeng L, Weber AP. Aerosol synthesis of nanoporous silica particles with controlled pore size distribution. J Aerosol Sci. 2014;76:1–12.

    Article  CAS  Google Scholar 

  41. Patravale V, Kulkarni R. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56(7):827–40.

    Article  CAS  PubMed  Google Scholar 

  42. Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.

    Article  CAS  PubMed  Google Scholar 

  43. Dhumal RS, Biradar SV, Yamamura S, Paradkar AR, York P. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability. Eur J Pharm Biopharm. 2008;70(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  44. Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406(1):145–52.

    Article  CAS  PubMed  Google Scholar 

  45. Ruan LP, Chen S, Yu BY, Zhu DN, Cordell G, Qiu S. Prediction of human absorption of natural compounds by the non-everted rat intestinal sac model. Eur J Med Chem. 2006;41(5):605–10.

    Article  CAS  PubMed  Google Scholar 

  46. Attari Z, Bhandari A, Jagadish P, Lewis S. Enhanced ex vivo intestinal absorption of olmesartan medoxomil nanosuspension: preparation by combinative technology. Saudi Pharm J. 2016;24(1):57–63.

    Article  PubMed  Google Scholar 

  47. He J, Han Y, Xu G, Yin L, Neubi MN, Zhou J, Ding Y. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Adv. 2017;7(22):13053–64.

    Article  CAS  Google Scholar 

  48. Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. Int J Pharm. 1989;51(1):9–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunitha Sampathi.

Electronic supplementary material

ESM 1

(DOCX 425 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gera, S., Talluri, S., Rangaraj, N. et al. Formulation and Evaluation of Naringenin Nanosuspensions for Bioavailability Enhancement. AAPS PharmSciTech 18, 3151–3162 (2017). https://doi.org/10.1208/s12249-017-0790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0790-5

KEY WORDS

Navigation