Skip to main content

Advertisement

Log in

Inducing Controlled Release and Increased Tumor-Targeted Delivery of Chlorambucil via Albumin/Liposome Hybrid Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Liposomes possess good biocompatibility and excellent tumor-targeting capacity. However, the rapid premature release of lipophilic drugs from the lipid bilayer of liposomes has negative effect on the tumor-targeted drug delivery of liposomes. In this study, a lipophilic antitumor drug—chlorambucil (CHL)—was encapsulated into the aqueous interior of liposomes with the aid of albumin to obtain the CHL-loaded liposomes/albumin hybrid nanoparticles (CHL-Hybrids). The in vitro accumulative release rate of CHL from CHL-Hybrids was less than 50% within 48 h, while the accumulative CHL release was more than 80% for CHL-loaded liposomes (CHL-Lip). After intravenous injection into rats, the half-life (t 1/2β = 5.68 h) and maximum blood concentration (C max = 4.58 μg/mL) of CHL-Hybrids were respectively 1.1 times and 3.5 times higher than that of CHL-Lip. In addition, CHL-Hybrids had better tumor-targeting capacity for it significantly increased the drug accumulation in B16F10 tumors, which contributed to the significantly control of tumor growth compared with CHL-Lip. Furthermore, CHL-Hybrid-treated B16F10 melanoma-bearing mice displayed the longest median survival time of 30.0 days among all the treated groups. Our results illustrated that the proposed hybrids drug delivery system would be a promising strategy to maintain the controlled release of lipophilic antitumor drugs from liposomes and simultaneously facilitate the tumor-targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17(3–4):160–6. doi:10.1016/j.drudis.2011.09.015.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Q, Zhang X, Chen T, Wang X, Fu Y, Jin Y, et al. A safe and efficient hepatocyte-selective carrier system based on myristoylated preS1/21-47 domain of hepatitis B virus. Nanoscale. 2015;7(20):9298–310. doi:10.1039/c4nr04730c.

    Article  CAS  PubMed  Google Scholar 

  3. Xiang G, Wu J, Lu Y, Liu Z, Lee RJ. Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. Int J Pharm. 2008;356(1–2):29–36. doi:10.1016/j.ijpharm.2007.12.030.

    Article  CAS  PubMed  Google Scholar 

  4. Goren D, Horowitz AT, Zalipsky S, Woodle MC, Yarden Y, Gabizon A. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer. 1996;74(11):1749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fahr A, Hoogevest P, May S, Bergstrand N. S. Leigh ML. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur J Pharm Sci. 2005;26(3–4):251–65. doi:10.1016/j.ejps.2005.05.012.

    Article  CAS  PubMed  Google Scholar 

  6. Zhigaltsev IV, Maurer N, Akhong QF, Leone R, Leng E, Wang J, et al. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release. 2005;104(1):103–11. doi:10.1016/j.jconrel.2005.01.010.

    Article  CAS  PubMed  Google Scholar 

  7. Pal A, Khan S, Wang Y-F, Kamath N, Sarkar AK, Ahmad A, et al. Preclinical safety, pharmacokinetics and antitumor efficacy profile of liposome-entrapped SN-38 formulation. Anticancer Res. 2005;25(1A):331–41.

    CAS  PubMed  Google Scholar 

  8. Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci. 2008;97(11):4696–740. doi:10.1002/jps.21358.

    Article  CAS  PubMed  Google Scholar 

  9. Amselem S, Cohen R, Barenholz Y. In vitro tests to predict in vivo performance of liposomal dosage forms. Chem Phys Lipids. 1993;64(1–3):219–37. doi:10.1016/0009-3084(93)90067-D.

    Article  CAS  PubMed  Google Scholar 

  10. Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157(2):168–82. doi:10.1016/j.jconrel.2011.07.031.

    Article  CAS  PubMed  Google Scholar 

  11. Panduranga RK. Recent developments of collagen-based materials for medical applications and drug delivery systems. J Biomater Sci Polym Ed. 1996;7(7):623–45. doi:10.1163/156856295x00526.

    Article  Google Scholar 

  12. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–83. doi:10.1016/j.jconrel.2008.05.010.

    Article  CAS  PubMed  Google Scholar 

  13. Yi X, Lian X, Dong J, Wan Z, Xia C, Song X, et al. Co-delivery of pirarubicin and paclitaxel by human serum albumin nanoparticles to enhance antitumor effect and reduce systemic toxicity in breast cancers. Mol Pharm. 2015;12(11):4085–98. doi:10.1021/acs.molpharmaceut.5b00536.

    Article  CAS  PubMed  Google Scholar 

  14. He X, Xiang N, Zhang J, Zhou J, Fu Y, Gong T, et al. Encapsulation of teniposide into albumin nanoparticles with greatly lowered toxicity and enhanced antitumor activity. Int J Pharm. 2015;487(1–2):250–9. doi:10.1016/j.ijpharm.2015.04.047.

    Article  CAS  PubMed  Google Scholar 

  15. Tadros MI, Al-mahallawi AM. Long-circulating lipoprotein-mimic nanoparticles for smart intravenous delivery of a practically-insoluble antineoplastic drug: development, preliminary safety evaluations and preclinical pharmacokinetic studies. Int J Pharm. 2015;493(1–2):439–50. doi:10.1016/j.ijpharm.2015.08.011.

    Article  CAS  PubMed  Google Scholar 

  16. Deng C, Zhang Q, Fu Y, Sun X, Gong T, Zhang Z. Coadministration of oligomeric hyaluronic acid-modified liposomes with tumor-penetrating peptide-iRGD enhances the antitumor efficacy of doxorubicin against melanoma. ACS Appl Mater Interfaces. 2016; doi:10.1021/acsami.6b13738.

    Google Scholar 

  17. Wang XY, Zhang Q, Lin Q, Zhang Y, Zhang ZR. Validated LC-MS/MS method for the simultaneous determination of chlorambucil and its prodrug in mouse plasma and brain, and application to pharmacokinetics. J Pharm Biomed Anal. 2014;99:74–8. doi:10.1016/j.jpba.2014.07.010.

    Article  CAS  PubMed  Google Scholar 

  18. Sun P, Huang W, Jin M, Wang Q, Fan B, Kang L, et al. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int J Nanomedicine. 2016;11:4931–45. doi:10.2147/ijn.s105427.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tanaka K, Kanazawa T, Shibata Y, Suda Y, Fukuda T, Takashima Y, et al. Development of cell-penetrating peptide-modified MPEG-PCL diblock copolymeric nanoparticles for systemic gene delivery. Int J Pharm. 2010;396(1–2):229–38. doi:10.1016/j.ijpharm.2010.06.028.

    Article  CAS  PubMed  Google Scholar 

  20. Guan S, Li L, Zhu X, Yang Y, Zhang Z, Huang Y. An in vitro investigation of a detachable fork-like structure as efficient nuclear-targeted sub-unit in A2780 cell cultures. Int J Pharm. 2016;500(1–2):100–9. doi:10.1016/j.ijpharm.2016.01.033.

    Article  CAS  PubMed  Google Scholar 

  21. Friberg S, Nyström AM. Nanotechnology in the war against cancer: new arms against an old enemy-a clinical view. Future Oncol. 2015;11(13):1961–75. doi:10.2217/fon.15.91.

    Article  CAS  PubMed  Google Scholar 

  22. Hanahan D. Rethinking the war on cancer. Lancet. 2014;383(9916):558–63. doi:10.1016/S0140-6736(13)62226-6.

    Article  PubMed  Google Scholar 

  23. Feng C, Wang Z, Jiang C, Kong M, Zhou X, Li Y, et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm. 2013;457(1):158–67. doi:10.1016/j.ijpharm.2013.07.079.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou J, Zhang X, Li M, Wu W, Sun X, Zhang L, et al. Novel lipid hybrid albumin nanoparticle greatly lowered toxicity of pirarubicin. Mol Pharm. 2013;10(10):3832–41. doi:10.1021/mp400303w.

    Article  CAS  PubMed  Google Scholar 

  25. Cao J, Wang R, Gao N, Li M, Tian X, Yang W, et al. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater Sci. 2015;3(12):1545–54. doi:10.1039/C5BM00161G.

    Article  CAS  PubMed  Google Scholar 

  26. Havel H, Finch G, Strode P, Wolfgang M, Zale S, Bobe I, et al. Nanomedicines: from bench to bedside and beyond. AAPS J. 2016;18(6):1373–8.

    Article  CAS  PubMed  Google Scholar 

  27. Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–9. doi:10.1016/j.addr.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  28. Li M, Yu H, Wang T, Chang N, Zhang J, Du D, et al. Tamoxifen embedded in lipid bilayer improves the oncotarget of liposomal daunorubicin in vivo. J Mater Chem B. 2014;2(12):1619–25. doi:10.1039/C3TB21423K.

    Article  CAS  Google Scholar 

  29. Dullens HF, De Weger RA, Vennegoor C, Den Otter W. Anti-tumour effect of chlorambucil-antibody complexes in a murine melanoma system. Eur J Cancer (1965). 1979;15(1):69–75. doi:10.1016/0014-2964(79)90207-X.

    Article  CAS  Google Scholar 

  30. Greig NH, Sweeney DJ, Rapoport SI. Comparative brain and plasma pharmacokinetics and anticancer activities of chlorambucil and melphalan in the rat. Cancer Chemother Pharmacol. 1987;21(1):1–8.

    Google Scholar 

  31. Clarke EGC, Moffat AC, Osselton MD, Widdop B. Clarke’s analysis of drugs and poisons: in pharmaceuticals, body fluids and postmortem material. London: Pharmaceutical Press; 2004.

    Google Scholar 

  32. Hartvig P, Simonsson B, Öberg G, Wallin I, Ehrsson H. Inter- and intraindividual differences in oral chlorambucil pharmacokinetics. Eur J Clin Pharmacol. 1988;35(5):551–4.

    Article  CAS  PubMed  Google Scholar 

  33. Elmowafy M, Viitala T, Ibrahim HM, Abu-Elyazid SK, Samy A, Kassem A, et al. Silymarin loaded liposomes for hepatic targeting: in vitro evaluation and HepG2 drug uptake. Eur J Pharm Sci. 2013;50(2):161–71. doi:10.1016/j.ejps.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  34. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15. doi:10.1021/mp800051m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reymond-Laruinaz S, Saviot L, Potin V, de Lucas MDCM. Protein-nanoparticle interaction in bioconjugated silver nanoparticles: a transmission electron microscopy and surface enhanced Raman spectroscopy study. Appl Surf Sci. 2016;389:17–24. doi:10.1016/j.apsusc.2016.07.082.

    Article  CAS  Google Scholar 

  36. Capriotti AL, Caracciolo G, Caruso G, Cavaliere C, Pozzi D, Samperi R, et al. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer. Anal Bioanal Chem. 2010;398(7–8):2895–903. doi:10.1007/s00216-010-4104-y.

    Article  CAS  PubMed  Google Scholar 

  37. Semple SC, Chonn A, Cullis PR. Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev. 1998;32(1):3–17. doi:10.1016/S0169-409X(97)00128-2.

    Article  CAS  PubMed  Google Scholar 

  38. Peng Q, Zhang S, Yang Q, Zhang T, Wei X-Q, Jiang L, et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials. 2013;34(33):8521–30. doi:10.1016/j.biomaterials.2013.07.102.

    Article  CAS  PubMed  Google Scholar 

  39. Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM. Investigation on the stability of saquinavir loaded liposomes: implication on stealth, release characteristics and cytotoxicity. Int J Pharm. 2012;431(1):120–9. doi:10.1016/j.ijpharm.2012.04.054.

    Article  CAS  PubMed  Google Scholar 

  40. Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm. 2009;6(4):1041–51. doi:10.1021/mp900090z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang L, Zhang S, Ruan S, Zhang Q, He Q, Gao H. Lapatinib-incorporated lipoprotein-like nanoparticles: preparation and a proposed breast cancer-targeting mechanism. Acta Pharmacol Sin. 2014;35(6):846–52. doi:10.1038/aps.2014.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun X, Li F, Wang Y, Liang W. Cellular uptake and elimination of lipophilic drug delivered by nanocarriers. Pharmazie. 2010;65(10):737–42.

    CAS  PubMed  Google Scholar 

  43. Deng C, Jia M, Wei G, Tan T, Fu Y, Gao H, et al. Inducing optimal antitumor immune response through coadministering iRGD with pirarubicin loaded nanostructured lipid carriers for breast cancer therapy. Mol Pharm. 2017;14(1):296–309. doi:10.1021/acs.molpharmaceut.6b00932.

    Article  CAS  PubMed  Google Scholar 

  44. Sharma P, Ganta S, Denny WA, Garg S. Formulation and pharmacokinetics of lipid nanoparticles of a chemically sensitive nitrogen mustard derivative: chlorambucil. Int J Pharm. 2009;367(1–2):187–94. doi:10.1016/j.ijpharm.2008.09.032.

    Article  CAS  PubMed  Google Scholar 

  45. Yuan W, Kuai R, Dai Z, Yuan Y, Zheng N, Jiang W, et al. Development of a flow-through USP-4 apparatus drug release assay to evaluate doxorubicin liposomes. AAPS J. 2017;19(1):150–60. doi:10.1208/s12248-016-9958-2.

    Article  CAS  PubMed  Google Scholar 

  46. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54(4):987–92.

    CAS  PubMed  Google Scholar 

  47. Zhao D, Zhao X, Yuangang Z, Li J, Yu Z, Jiang R, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010;5:669–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta Biomembr. 1993;1151(2):201–15. doi:10.1016/0005-2736(93)90105-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank for the financial supports of the National Natural Science Foundation of China (No. 81603045) and the Hainan International Cooperation Agreement (No. KJHZ2014-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Zhang or Xiaohong Xu.

Ethics declarations

All animal experiments were performed in compliance with the Guidelines of the Care and Use of Laboratory Animals and approved by the Experiment Animal Administrative Committee of Chengdu Medical College.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, L., Li, Z. et al. Inducing Controlled Release and Increased Tumor-Targeted Delivery of Chlorambucil via Albumin/Liposome Hybrid Nanoparticles. AAPS PharmSciTech 18, 2977–2986 (2017). https://doi.org/10.1208/s12249-017-0782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0782-5

KEY WORDS

Navigation