Skip to main content

Advertisement

Log in

Efavirenz Dissolution Enhancement IV—Antisolvent Nanocrystallization by Sonication, Physical Stability, and Dissolution

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Efavirenz is a fundamental drug in the HIV therapy; however, it has a low bioavailability due to low water solubility. Particle nanonization should enhance its dissolution and therefore its bioavailability. Nanocrystallization is a promising technique for preparing drug nanocrystals. A solution containing efavirenz (EFV) and methanol was added to an aqueous solution of particle stabilizers, under sonication. The adequate polymer stabilizer and its concentration and drug load were evaluated. Particle size and zeta potential of suspensions were measured. Nanosuspensions were freeze-dried and the resulting powder was characterized by some techniques, with special attention to dissolution. Particle size and zeta potential analysis showed that HMPC and PVP were the most suitable polymers. All samples prepared with these stabilizers had nanosized particles and proper zeta potential; however, sedimentation and particle growth were detected with Turbiscan™. Time-related destabilization occurred when the lowest polymer concentration of 20% was used. SEM analysis of the dried powder shows film formation for suspensions with 40% of polymer and particle aggregation in samples with less polymer. Dissolution profiles of samples were higher than EFV raw material, although the lower the polymer concentration, the higher the dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

ATR:

Attenuated total reflectance

BCS:

Biopharmaceutics Classification System

BS:

Backscattering

EFV:

Efavirenz

HIV:

Human immunodeficiency virus

HPC:

Hydroxypropyl cellulose

HPMC:

Hydroxypropyl methylcellulose

IDR:

Intrinsic dissolution rate

IR:

Infrared

PDI:

Polydispersity index

PVP:

Polyvinylpyrrolidone

PXRD:

Powder X-ray diffraction

SEM:

Scanning electron microscopy

SLS:

Sodium lauryl sulfate

TSI:

Turbiscan stability index

ΔBS:

Backscattering variation

ζ :

Zeta potential

References

  1. Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, Richter C, et al. Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br J Clin Pharmacol. 2006;61:148–54.

    Article  CAS  PubMed  Google Scholar 

  2. Chiappetta DA, Facorro G, de Celis ER, Sosnik A. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Nanomedicine. 2011;7:624–37.

    Article  CAS  PubMed  Google Scholar 

  3. Patel GV, Patel VB, Pathak A, Rajput SJ. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. Drug Dev Ind Pharm. 2014;40:80–91.

    Article  CAS  PubMed  Google Scholar 

  4. Chiappetta DA, Hocht C, Taira C, Sosnik A. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials. 2011;32:2379–87.

    Article  CAS  PubMed  Google Scholar 

  5. Cristofoletti R, Nair A, Abrahamsson B, Groot DW, Kopp S, Langguth P, et al. Biowaiver monographs for immediate release solid oral dosage forms: efavirenz. J Pharm Biomed Anal. 2013;102:318–29.

    CAS  Google Scholar 

  6. Cho E, Cho W, Cha K-H, Park J, Kim M-S, Kim J-S, et al. Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives. Int J Pharm. 2010;396:91–8.

    Article  CAS  PubMed  Google Scholar 

  7. Fandaruff C, Rauber GS, Araya-sibaja AM, Pereira RN, Campos CEMD, Rocha HVA, et al. Polymorphism of anti-HIV drug efavirenz: investigations on thermodynamic and dissolution properties. Cryst Growth Des. 2014;14:4968–75.

    Article  CAS  Google Scholar 

  8. Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113:151–70.

    Article  CAS  PubMed  Google Scholar 

  9. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res. 2013;30:307–24.

    Article  CAS  PubMed  Google Scholar 

  10. Patel AP, Patel JK, Patel KS, Deshmukh AB, Mishra BR. A review on drug nanocrystal a carrier free drug delivery. Int J Res Ayurveda Pharm. 2011;2:448–58.

    CAS  Google Scholar 

  11. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: in vivo performances. J Control Release. 2012;160:418–30.

    Article  CAS  PubMed  Google Scholar 

  12. Verma S, Gokhale R, Burgess DJ. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm. 2009;380:216–22.

    Article  CAS  PubMed  Google Scholar 

  13. de Waard H, Grasmeijer N, Hinrichs WLJ, Eissens AC, Pfaffenbach PPF, Frijlink HW. Preparation of drug nanocrystals by controlled crystallization: application of a 3-way nozzle to prevent premature crystallization for large scale production. Eur J Pharm Sci. 2009;38:224–9.

    Article  PubMed  Google Scholar 

  14. Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453:126–41.

    Article  CAS  PubMed  Google Scholar 

  15. Jain S, Sharma JM, Agrawal AK, Mahajan RR. Surface stabilized efavirenz nanoparticles for oral bioavailability enhancement. J Biomed Nanotechnol. 2013;9:1862–74.

    Article  CAS  PubMed  Google Scholar 

  16. Ye X, Patil H, Feng X, Tiwari RV, Lu J, Gryczke A, et al. Conjugation of hot-melt extrusion with high-pressure homogenization: a novel method of continuously preparing nanocrystal solid dispersions. AAPS PharmSciTech. 2015; doi:10.1208/s12249-015-0389-7.

    PubMed Central  Google Scholar 

  17. da Costa MA, Seiceira RC, Rodrigues CR, Hoffmeister CRD, Cabral LM, Rocha HVA. Efavirenz dissolution enhancement I: co-micronization. Pharmaceutics. 2013;5:1–22.

    Article  Google Scholar 

  18. Costa MA, Lione VOF, Cabral LM, Rocha HVA. Efavirenz dissolution enhancement II: aqueous co-spray-drying. Int J Pharm Sci Res. 2015;6:3807–20.

    Google Scholar 

  19. Hoffmeister CRD, Fandaruff C, Costa MA, Cabral LM, Pitta LR, Bilatto SER et al. Efavirenz dissolution enhancement III: colloid milling, pharmacokinetics and electronic tongue evaluation. Submited Artic.

  20. Sze A, Erickson D, Ren L, Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J Colloid Interface Sci. 2003;261:402–10.

    Article  CAS  PubMed  Google Scholar 

  21. Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406:145–52.

    Article  CAS  PubMed  Google Scholar 

  22. Choi J-Y, Yoo JY, Kwak H-S, Uk Nam B, Lee J. Role of polymeric stabilizers for drug nanocrystal dispersions. Curr Appl Phys. 2005;5:472–4.

    Article  Google Scholar 

  23. Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172:1126–41.

    Article  CAS  PubMed  Google Scholar 

  24. Carrique F, Arroyo F, Delgado A. Effect of a dynamic stern layer on the sedimentation velocity and potential in a dilute suspension of colloidal particles. J Colloid Interface Sci. 2000;227:212–22.

    Article  CAS  PubMed  Google Scholar 

  25. Nasser MS, James AE. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep Purif Technol. 2006;52:241–52.

    Article  CAS  Google Scholar 

  26. Sawant SV, Kadam VJ, Jadhav KR, Sankpal SV. Drug nanocrystals: novel technique for delivery of poorly soluble drugs. Int J Sci Innov Discov. 2011;1:1–15.

    CAS  Google Scholar 

  27. Liu G, Zhang D, Jiao Y, Zheng D, Liu Y, Duan C, et al. Comparison of different methods for preparation of a stable riccardin D formulation via nano-technology. Int J Pharm. 2012;422:516–22.

    Article  CAS  PubMed  Google Scholar 

  28. Mengual O. TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta. 1999;50:445–56.

    Article  CAS  PubMed  Google Scholar 

  29. Kang W, Xu B, Wang Y, Li Y, Shan X, An F, et al. Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids Surfaces A Physicochem Eng Asp. 2011;384:555–60.

    Article  CAS  Google Scholar 

  30. Gomes EC d L, Mussel WN, Resende JM, Fialho SL, Barbosa J, Yoshida MI. Chemical interactions study of antiretroviral drugs efavirenz and lamivudine concerning the development of stable fixed-dose combination formulations for AIDS treatment. J Brazilian Chem Soc. 2013;24:573–9.

    CAS  Google Scholar 

  31. Mahapatra AK, Murthy PN. Solubility and dissolution rate enhancement of efavirenz by inclusion complexation and liquid anti-solvent precipitation technique. J Chem Pharm Res. 2014;6:1099–106.

    Google Scholar 

  32. Stuart BH. Infrared spectroscopy: fundamentals and applications. 2004. doi:10.1002/0470011149.

  33. Shankar S, Rhim JW. Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym. 2016;135:18–26.

    Article  CAS  PubMed  Google Scholar 

  34. Laot CM, Marand E, Oyama HT. Spectroscopic characterization of molecular interdiffusion at a poly(vinyl pyrrolidone)/vinyl ester interface. Polymer (Guildf). 1999; 40. doi:10.1016/S0032-3861(98)80003-7.

  35. Mahapatra S, Thakur TS, Joseph S, Varughese S, Desiraju GR. New solid state forms of the anti-HIV drug efavirenz. Conformational flexibility and high Z’ issues. Cryst Growth Des. 2010;10:3191–202.

    Article  CAS  Google Scholar 

  36. Blachére JR, Brittain HG. X-ray diffraction methods for the characterization of solid pharmaceutical materials. In: Adeyeye M, Brittain HG, editors. Drugs and pharmaceutical sciences: preformulation in solid dosage form development. New York: Informa Healthcare; 2008. p. 229–52.

    Google Scholar 

  37. Matteucci ME, Hotze MA, Johnston KP, Williams RO. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir. 2006;22:8951–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Understanding polymer properties important for crystal growth inhibition-impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst Growth Des. 2012;12:3133–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the Laboratory of Pharmaceutical Technology (Farmanguinhos, Fiocruz), the Laboratory of X-Ray Diffraction (UFF), the Technological Characterization Sector from the Mineral Technology Center (CETEM), the Laboratory of the Chemical Engineering Department (UFRJ), the Laboratory of Polymerization Engineering (UFRJ), the Department of Natural Products (Farmanguinhos, Fiocruz), and the Platform of Analytical Methods (Farmanguinhos, Fiocruz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Julianelly Sartori.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sartori, G.J., Prado, L.D. & Rocha, H.V.A. Efavirenz Dissolution Enhancement IV—Antisolvent Nanocrystallization by Sonication, Physical Stability, and Dissolution. AAPS PharmSciTech 18, 3011–3020 (2017). https://doi.org/10.1208/s12249-017-0781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0781-6

KEY WORDS

Navigation