Skip to main content
Log in

Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Carvedilol (CAR) is a non-selective α and β blocker categorized as class II drug with low water solubility. Several recent studies have investigated ways to overcome this problem. The aim of the present study was to combine two of these methods: the inclusion complex using hydroxypropyl-β-cyclodextrin (HPβCD) with solid dispersion using two carriers: Poloxamer 188 (PLX) and Polyvinylpyrrolidone K-30 (PVP) to enhance the solubility, bioavailability, and the stability of CAR. Kneading method was used to prepare CAR-HPβCD inclusion complex (KD). The action of different carriers separately and in combination on Carvedilol solubility was investigated in three series. CAR-carrier and KD-carrier solid dispersions were prepared by solvent evaporation method. In vitro dissolution test was conducted in three different media: double-distilled water (DDW), simulative gastric fluid (SGF), and PBS pH 6.8 (PBS). The interactions between CAR, HPβCD, and different carriers were explored by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (XRD), and differential scanning colorimetry (DSC). The results showed higher solubility of CAR in KD-PVP solid dispersions up to 70, 25, and 22 fold compared to pure CAR in DDW, SGF, and PBS, respectively. DSC and XRD analyses indicated an improved degree of transformation of CAR in KD-PVP solid dispersion from crystalline to amorphous state. This study provides a new successful combination of two polymers with the dual action of HPβCD and PLX/PVP on water solubility and bioavailability of CAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAR:

Carvedilol

HPβCD:

Hydroxypropyl-β-Cyclodextrin

PLX:

Poloxamer 188

PVP:

Polyvinyl pyrrolidone K-30

KD:

CAR-HPβCD inclusion complex

PLX1:

CAR-PLX solid dispersion in the weight ratio 1:1

PLX2:

CAR-PLX solid dispersion in the weight ratio 1:3

PLX3:

CAR-PLX solid dispersion in the weight ratio 1:5

PVP1:

CAR-PVP solid dispersion in the weight ratio 1:1

PVP2:

CAR-PVP solid dispersion in the weight ratio 1:3

PVP3:

CAR-PVP solid dispersion in the weight ratio 1:5

References

  1. Goodman LS. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 1996.

    Google Scholar 

  2. Wiedemann F, Kampe W, Thiel M, Sponer G, Roesch E, Dietmann K. Hypotensive, angina pectoris. Google Patents. 1985.

  3. Vieth M, Siegel MG, Higgs RE, Watson IA, Robertson DH, Savin KA, et al. Characteristic physical properties and structural fragments of marketed oral drugs. J Med Chem. 2004;47(1):224–32.

    Article  CAS  PubMed  Google Scholar 

  4. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  5. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov. 2004;3(12):1023–35. Epub 2004/12/02

    Article  CAS  PubMed  Google Scholar 

  6. Archontaki H, Vertzoni M, Athanassiou-Malaki M. Study on the inclusion complexes of bromazepam with β-and β-hydroxypropyl-cyclodextrins. J Pharm Biomed Anal. 2002;28(3):761–9.

    Article  CAS  PubMed  Google Scholar 

  7. Popescu C, Manda P, Juluri A, Janga KY, Cidda M, Murthy SN. Enhanced dissolution efficiency of zaleplon solid dispersions via modified β-cyclodextrin molecular inclusion complexes. 2015;1.

  8. Dandawate PR, Vyas A, Ahmad A, Banerjee S, Deshpande J, Swamy KV, et al. Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1: 2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm Res. 2012;29(7):1775–86.

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Cao Y, Sun B, Wang C. Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin. Food Chem. 2011;124(3):1069–75.

    Article  CAS  Google Scholar 

  10. Nguyen TA, Liu B, Zhao J, Thomas DS, Hook JM. An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem. 2013;136(1):186–92.

    Article  CAS  PubMed  Google Scholar 

  11. Xu C, Tang Y, Hu W, Tian R, Jia Y, Deng P, et al. Investigation of inclusion complex of honokiol with sulfobutyl ether-β-cyclodextrin. Carbohydr Polym. 2014;113:9–15.

    Article  CAS  PubMed  Google Scholar 

  12. Wang D, Chen G, Ren L. Preparation and characterization of the sulfobutylether-β-cyclodextrin inclusion complex of amiodarone hydrochloride with enhanced oral bioavailability in fasted state. AAPS PharmSciTech. 2016;1–10.

  13. Sekiguchi O. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9(11):866–72.

    Article  CAS  Google Scholar 

  14. Saeedi M, Akbari J, Morteza-Semnani K, Khanalipoor N. Preparation and characterization of piroxicam solid dispersion using PEG4000 and Tween 40. J Mazandaran Univ Med Sci. 2015;24(122):1–11.

    Google Scholar 

  15. Li J, Lee IW, Shin GH, Chen X, Park HJ. Curcumin-Eudragit® E PO solid dispersion: a simple and potent method to solve the problems of curcumin. Eur J Pharm Biopharm. 2015;94:322–32.

    Article  CAS  PubMed  Google Scholar 

  16. Pradhan R, Tran TH, Choi JY, Choi IS, Choi HG, Yong CS, et al. Development of a rebamipide solid dispersion system with improved dissolution and oral bioavailability. Arch Pharm Res. 2015;38(4):522–33.

    Article  CAS  PubMed  Google Scholar 

  17. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’drug delivery systems. Eur J Pharm Sci. 2000;11:S93–S8.

    Article  CAS  PubMed  Google Scholar 

  18. Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25(1):103–28.

    Article  CAS  Google Scholar 

  19. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  20. Saffoon N, Uddin R, Huda NH, Sutradhar KB. Enhancement of oral bioavailability and solid dispersion: a review. 2011.

  21. Goldberg AH, Gibaldi M, Kanig JL, Mayersohn M. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV Chloramphenicol—urea system. J Pharm Sci. 1966;55(6):581–3. Epub 1966/06/01

    Article  CAS  PubMed  Google Scholar 

  22. Loftsson T, Vogensen SB, Desbos C, Jansook P. Carvedilol: solubilization and cyclodextrin complexation: a technical note. AAPS PharmSciTech. 2008;9(2):425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loftsson T, Brewster ME. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci. 2012;101(9):3019–32.

    Article  CAS  PubMed  Google Scholar 

  24. Pamudji JS, Mauludin R, Lestari VA. Improvement of carvedilol dissolution rate through formation of inclusion complex with B-cyclodextrin. Int J Pharm Pharm Sci. 2014;6(4):228–33.

    CAS  Google Scholar 

  25. Yuvaraja K, Khanam J. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal. 2014;96(2):10–20.

    Article  CAS  PubMed  Google Scholar 

  26. Nasrin F. Development and in vitro characterization of atorvastatin calcium poloxamer 407 solid dispersion systems. Int J Pharm Technol. 2014;5(4):6151–64.

    Google Scholar 

  27. T. Higuchi, KA Connors. Phase solubility techniques. advances in analytical chemistry and instrumentation. 1965;4:117.

  28. Sharma A, Jain CP. Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res Pharm Sci. 2010;5(1):49–56. Epub 2010/01/01

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuvaraja K, Khanam J. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal. 2014;96:10–20. Epub 2014/04/08

    Article  CAS  PubMed  Google Scholar 

  30. Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1998;17(4–5):811–22.

    Article  CAS  PubMed  Google Scholar 

  31. Brittain HG. Polymorphism in pharmaceutical solids. CRC Press. 2009.

  32. Pokharkar VB, Mandpe LP, Padamwar MN, Ambike AA, Mahadik KR, Paradkar A. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol. 2006;167(1):20–5.

    Article  CAS  Google Scholar 

  33. Shoukri RA, Ahmed IS, Shamma RN. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. Eur J Pharm Biopharm. 2009;73(1):162–71. Epub 2009/05/02

    Article  CAS  PubMed  Google Scholar 

  34. Shamma RN, Basha M. Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 2013;237(0):406–14.

    Article  CAS  Google Scholar 

  35. Bhosale P, Pore Y, Sayyad F. Preparation of amorphous carvedilol polymeric microparticles for improvement of physicochemical properties. J Pharm Investig. 2012;42(6):335–44.

    Article  CAS  Google Scholar 

  36. Mura P, Adragna E, Rabasco AM, Moyano JR, Perez-Martinez JI, Arias MJ, et al. Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems. Drug Dev Ind Pharm. 1999;25(3):279–87. Epub 1999/03/11

    Article  CAS  PubMed  Google Scholar 

  37. Vandelli MA, Salvioli G, Mucci A, Panini R, Malmusi L, Forni F. 2-Hydroxypropyl-β-cyclodextrin complexation with ursodeoxycholic acid. Int J Pharm. 1995;118(1):77–83.

    Article  CAS  Google Scholar 

  38. Veiga F, Teixeira-Dias JJC, Kedzierewicz F, Sousa A, Maincent P. Inclusion complexation of tolbutamide with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. Int J Pharm. 1996;129(1–2):63–71.

    Article  CAS  Google Scholar 

  39. Cannavà C, Crupi V, Guardo M, Majolino D, Stancanelli R, Tommasini S, et al. Phase solubility and FTIR-ATR studies of idebenone/sulfobutyl ether β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem. 2013;75(3–4):255–62.

    Article  Google Scholar 

  40. Wen X, Tan F, Jing Z, Liu Z. Preparation and study the 1:2 inclusion complex of carvedilol with β-cyclodextrin. J Pharm Biomed Anal. 2004;34(3):517–23.

    Article  CAS  PubMed  Google Scholar 

  41. Mura P, Faucci MT, Manderioli A, Bramanti G. Multicomponent systems of econazole with hydroxyacids and cyclodextrins. J Incl Phenom Macrocycl Chem. 2001;39(1–2):131–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoghbi, A., Geng, T. & Wang, B. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol. AAPS PharmSciTech 18, 2927–2935 (2017). https://doi.org/10.1208/s12249-017-0769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0769-2

KEY WORDS

Navigation