Abstract
Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities.
This is a preview of subscription content, access via your institution.

REFERENCES
Jonathan G, Karim A. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499:376–94.
Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2:2–11.
Ranade VV, Cannon JB. Drug delivery systems, Third Edition. Taylor & Francis; 2011.
Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2014.
Remington Essentials of Pharmaceutics—Felton, Linda 2012: Remington essentials of pharmaceutics—Felton, Linda 2012.
Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B. 2013;3:361–72.
Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine Nanotechnol Biol Med. 2005;1:193–212.
Hartl M, Daemen L, Muhrer G. Water trapped in silica microspheres. Microporous Mesoporous Mater. 2012;161:7–13.
Miyake Y, Ishida H, Tanaka S, Kolev SD. Theoretical analysis of the pseudo-second order kinetic model of adsorption. Application to the adsorption of Ag(I) to mesoporous silica microspheres functionalized with thiol groups. Chem Eng J. 2013;218:350–7.
Dutta T, Agashe HB, Garg M, Balasubramanium P, Kabra M, Jain NK. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro: research paper. J Drug Target. 2007;15:89–98.
Wiwattanapatapee R, Carreño-Gómez B, Malik N, Duncan R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res. 2000;17:991–8.
Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small. 2007;3:1341–6.
Enayati M, Ahmad Z, Stride E, Edirisinghe M. One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles. J R Soc Interface. 2010;7:667–75.
Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnol. 2008;6:11.
Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66:227–43.
Li X, Zhang Q, Ahmad Z, Huang J, Ren Z, Weng W, et al. Near-infrared luminescent CaTiO 3: Nd 3 nanofibers with tunable and trackable drug release kinetics. J Mater Chem B. 2015;3:7449–56.
Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684–8.
Kazunori K, Glenn SK, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24:119–32.
Haj-Ahmad RR, Elkordy AA, Chaw CS. In vitro characterisation of Span 65 niosomal formulations containing proteins. Curr Drug Deliv. 2015;12:628–39.
Guinedi AS, Mortada ND, Mansour S, Hathout RM. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm. 2005;306:71–82.
Oberoi HS, Yorgensen YM, Morasse A, Evans JT, Burkhart DJ. PEG modified liposomes containing CRX-601 adjuvant in combination with methylglycol chitosan enhance the murine sublingual immune response to influenza vaccination. J Control Release. 2016;223:64–74.
Kaminski GAT, Sierakowski MR, Pontarolo R, Santos LA, Freitas RA. Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor. Carbohydr Polym. 2016;140:129–35.
El Maghraby GM, Ahmed AA, Osman MA. Penetration enhancers in proniosomes as a new strategy for enhanced transdermal drug delivery. Saudi Pharm J. 2015;23:67–74.
Yuksel N, Bayindir ZS, Aksakal E, Ozcelikay AT. In situ niosome forming maltodextrin proniosomes of candesartan cilexetil: in vitro and in vivo evaluations. Int J Biol Macromol. 2016;82:453–63.
Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol. 2001;5:447–51.
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1:149–73.
Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr Drug Deliv. 2012;9:367–94.
Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, et al. Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J. 2010;1:164–209.
Porter CJ, Kaukonen AM, Taillardat‐Bertschinger A, Boyd BJ, O’Connor JM, Edwards GA, et al. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride‐based oral lipid formulations of poorly water‐soluble drugs: studies with halofantrine. J Pharm Sci. 2004;93:1110–21.
Goindi S, Kaur R, Kaur R. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: development, ex-vivo and in-vivo evaluation. Int J Pharm. 2015;495:913–23.
Lv D, Bai Z, Yang L, Li X, Chen X. Lipid emulsion reverses bupivacaine-induced apoptosis of h9c2 cardiomyocytes: PI3K/Akt/GSK-3β signaling pathway. Environ Toxicol Pharmacol. 2016;42:85–91.
Boakye CHA, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm. 2015;489:106–16.
Padois K, Cantiéni C, Bertholle V, Bardel C, Pirot F, Falson F. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm. 2011;416:300–4.
Savic S, Tamburic S, Savic MM. From conventional towards new-natural surfactants in drug delivery systems design: current status and perspectives. Expert Opin Drug Deliv. 2010;7:353–69.
Tadros TF. Applied surfactants: principles and applications. Wiley; 2006.
Lawrence MJ. Surfactant systems: their use in drug delivery. Chem Soc Rev. 1994;23:417–24.
Smith EW, Maibach HI. Percutaneous penetration enhancers. Taylor & Francis; 1995.
Dimitrijevic D, Lamandin CC, Uchegbu IF, Shaw AJ, Florence AT. The effect of monomers and of micellar and vesicular forms of non-ionic surfactants (Solulan C24 and Solulan 16) on Caco-2 cell monolayers. J Pharm Pharmacol. 1997;49:611–6.
Paul W. Ceramic drug delivery: a perspective. J Biomater Appl. 2003;17:253.
Arcos D, Vallet-Regí M. Bioceramics for drug delivery. Acta Mater. 2013;61:890–911.
Sebastian M, Ninan N, Haghi AK. Nanomedicine and drug delivery. Apple Academic Press; 2012.
Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2:889–96.
Ahuja G, Pathak K. Porous carriers for controlled/modulated drug delivery. Indian J Pharm Sci. 2009;71:599–607.
Arruebo M. Drug delivery from structured porous inorganic materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:16–30.
Sher P, Ingavle G, Ponrathnam S, Pawar AP. Low density porous carrier: drug adsorption and release study by response surface methodology using different solvents. Int J Pharm. 2007;331:72–83.
Alcalá-Alcalá S, Benítez-Cardoza CG, Lima-Muñoz EJ, Piñón-Segundo E, Quintanar-Guerrero D. Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies. Int J Pharm. 2015;489:139–47.
Sun L, Zhou S, Wang W, Li X, Wang J, Weng J. Preparation and characterization of porous biodegradable microspheres used for controlled protein delivery. Colloids Surf Physicochem Eng Asp. 2009;345:173–81.
Shi X, Jiang J, Sun L, Gan Z. Hydrolysis and biomineralization of porous PLA microspheres and their influence on cell growth. Colloids Surf B. 2011;85:73–80.
Ehtezazi T, Washington C, Melia CD. First order release rate from porous PLA microspheres with limited exit holes on the exterior surface. J Control Release. 2000;66:27–38.
Son HY, Lee DJ, Lee JB, Park CH, Seo M, Jang J, et al. In situ functionalization of highly porous polymer microspheres with silver nanoparticles via bio-inspired chemistry. RSC Adv. 55604.
Montaseri H, Sayyafan M, Tajerzadeh H. Preparation and characterization of poly-(methyl ethyl cyanoacrylate) particles containing 5-aminosalicylic acid. Iran J Pharm Res. 2010:21–7.
Guo S, Yao T, Wang C, Zeng C, Zhang L. Preparation of monodispersed porous polyacrylamide microspheres via phase separation in microchannels. React Funct Polym. 2015;91–92:77–84.
Rajkumar M, Bhise SB. Carbamazepine-loaded porous microspheres for short-term sustained drug delivery. J Young Pharm. 2010;2:7–14.
Mi F, Shyu S, Chen C, Schoung J. Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials. 1999;20:1603–12.
Hou X, Wang X, Gao B, Yang J. Preparation and characterization of porous polysucrose microspheres. Carbohydr Polym. 2008;72:248–54.
Akamatsu K, Maruyama K, Chen W, Nakao A, Nakao S. Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. J Colloid Interface Sci. 2011;363:707–10.
Kwon MJ, Bae JH, Kim JJ, Na K, Lee ES. Long acting porous microparticle for pulmonary protein delivery. Int J Pharm. 2007;333:5–9.
Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276:1868–71.
Alcala-Alcala S, Urban-Morlan Z, Aguilar-Rosas I, Quintanar-Guerrero D. A biodegradable polymeric system for peptide-protein delivery assembled with porous microspheres and nanoparticles, using an adsorption/infiltration process. Int J Nanomedicine. 2013;8:2141–51.
Kim TK, Yoon JJ, Lee DS, Park TG. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials. 2006;27:152–9.
Sharma A, Khan S, Singhai A. Microsponges: a potential novel carrier. Pharma Sci Monit. 2014;5:93–7.
Kumar R, Sharma SK, Jaimini M, Alam N. Microsponge drug delivery systems for novel topical drug delivery. IJPSL. 2011;4:384–90.
Kaity S, Maiti S, Ghosh AK, Pal D, Ghosh A, Banerjee S. Microsponges: a novel strategy for drug delivery system. J Adv Pharm Technol Res. 2010;1:283–90.
Seo Y, Pant HR, Nirmala R, Lee J, Song KG, Kim HY. Fabrication of highly porous poly (ε-caprolactone) microfibers via electrospinning. J Porous Mater. 2012;19:217–23.
Qi Z, Yu H, Chen Y, Zhu M. Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly (l-lactic acid). Mater Lett. 2009;63:415–8.
McCann JT, Marquez M, Xia Y. Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc. 2006;128:1436–7.
Hwang CM, Khademhosseini A, Park Y, Sun K, Lee S. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir. 2008;24:6845–51.
Lin J, Ding B, Yu J. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces. 2010;2:521–8.
van der Maaden K, Luttge R, Vos PJ, Bouwstra J, Kersten G, Ploemen I. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv Transl Res. 2015;5:397–406.
Park J, Choi S, Kamath R, Yoon Y, Allen MG, Prausnitz MR. Polymer particle-based micromolding to fabricate novel microstructures. Biomed Microdevices. 2007;9:223–34.
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62:83–99.
Yang S, Fu Y, Jeong SH, Park K. Application of poly (acrylic acid) superporous hydrogel microparticles as a super‐disintegrant in fast‐disintegrating tablets. J Pharm Pharmacol. 2004;56:429–36.
Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53.
Simões S, Figueiras A, Veiga F. Modular hydrogels for drug delivery. J Biomater Nanobiotechnol. 2012;3:185–99.
Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.
Zhang LF, Yang DJ, Chen HC, Sun R, Xu L, Xiong ZC, et al. An ionically crosslinked hydrogel containing vancomycin coating on a porous scaffold for drug delivery and cell culture. Int J Pharm. 2008;353:74–87.
Tada D, Tanabe T, Tachibana A, Yamauchi K. Drug release from hydrogel containing albumin as crosslinker. J Biosci Bioeng. 2005;100:551–5.
Mastropietro DJ, Omidian H, Park K. Drug delivery applications for superporous hydrogels. Expert Opin Drug Deliv. 2012;9:71–89.
Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16.
Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17:93–102.
Marin E, Briceno MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine. 2013;8:3071–90.
Coelho J. Drug delivery systems: advanced technologies potentially applicable in personalised treatment. Springer Science & Business Media; 2013.
Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release. 2012;161:446–60.
Brinker CJ. Porous inorganic materials. Curr Opin Solid State Mater Sci. 1996;1:798–805.
Pal N, Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrid and purely organic solids. Adv Colloid Interface Sci. 2013;189–190:21–41.
Vallet‐Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed. 2007;46:7548–58.
Vallet‐Regí M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem Eur J. 2006;12:5934–43.
Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117:1–9.
Song S, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir. 2005;21:9568–75.
Heikkilä T, Salonen J, Tuura J, Hamdy MS, Mul G, Kumar N, et al. Mesoporous silica material TUD-1 as a drug delivery system. Int J Pharm. 2007;331:133–8.
Nishiwaki A, Watanabe A, Higashi K, Tozuka Y, Moribe K, Yamamoto K. Molecular states of prednisolone dispersed in folded sheet mesoporous silica (FSM-16). Int J Pharm. 2009;378:17–22.
Zhang Y, Jiang T, Zhang Q, Wang S. Inclusion of telmisartan in mesocellular foam nanoparticles: drug loading and release property. Eur J Pharm Biopharm. 2010;76:17–23.
Popovici RF, Seftel EM, Mihai GD, Popovici E, Voicu VA. Controlled drug delivery system based on ordered mesoporous silica matrices of captopril as angiotensin-converting enzyme inhibitor drug. J Pharm Sci. 2011;100:704–14.
Doadrio AL, Sousa EMB, Doadrio JC, Pérez Pariente J, Izquierdo-Barba I, Vallet-Regí M. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J Control Release. 2004;97:125–32.
Manzano M, Aina V, Areán CO, Balas F, Cauda V, Colilla M, et al. Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J. 2008;137:30–7.
Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm. 2008;69:223–30.
Zhao P, Wang L, Sun C, Jiang T, Zhang J, Zhang Q, et al. Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. Eur J Pharm Biopharm. 2012;80:535–43.
Kim T. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett. 8:3724–7.
Tang S, Huang X, Chen X, Zheng N. Hollow mesoporous zirconia nanocapsules for drug delivery. Adv Funct Mater. 2010;20:2442–7.
Kapoor S, Hegde R, Bhattacharyya AJ. Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release. J Control Release. 2009;140:34–9.
Borbane S, Pande V, Vibhute S, Kendre P, Dange V. Design and fabrication of ordered mesoporous alumina scaffold for drug delivery of poorly water soluble drug. Austin Ther. 2015;2:1015.
Gedda G, Pandey SS, Khan S, Talib A, Wu HF. Synthesis of mesoporous titanium oxide for control release and high efficiency drug delivery of vinorelbin bitartrate. RSC Adv. 2015;6:13145–51.
Huang S, Li C, Cheng Z, Fan Y, Yang P, Zhang C, et al. Magnetic Fe3O4@mesoporous silica composites for drug delivery and bioadsorption. J Colloid Interface Sci. 2012;376:312–21.
Reddy MN, Cheralathan K, Sasikumar S. In vitro bioactivity and drug release kinetics studies of mesoporous silica-biopolymer composites. J Porous Mater. 2015;22:1465–72.
Shahbazi M, Herranz B, Santos HA. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomaterials. 2012;2:296–312.
Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5:124–33.
Vallet-Regí M, Balas F. Silica materials for medical applications. Open Biomed Eng J. 2008;2:1–9.
Zeng W, Qian X, Zhang Y, Yin J, Zhu Z. Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system. Mater Res Bull. 2005;40:766–72.
Beck J, Vartuli J, Roth WJ, Leonowicz M, Kresge C, Schmitt K, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.
Hoffmann F, Cornelius M, Morell J, Fröba M. Silica‐based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed. 2006;45:3216–51.
Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc. 1998;120:6024–36.
Giraldo L, López B, Pérez L, Urrego S, Sierra L, Mesa M. Mesoporous silica applications. Macromol Symp. 2007;258:129–41.
Bagshaw SA, Prouzet E, Pinnavaia TJ. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science. 1995;269:1242–4.
Jansen J, Shan Z, Marchese L, Zhou W, Puil NVD, Maschmeyer T. A new templating method for three-dimensional mesopore networks. Chem Commun. 2001:713–4.
Inagaki S, Koiwai A, Suzuki N, Fukushima Y, Kuroda K. Syntheses of highly ordered mesoporous materials, FSM-16, derived from Kanemite. Bull Chem Soc Jpn. 1996;69:1449–57.
Uejo F, Limwikrant W, Moribe K, Yamamoto K. Dissolution improvement of fenofibrate by melting inclusion in mesoporous silica. Asian J Pharmacol. 2013;8:329–35.
Horcajada P, Ramila A, Perez-Pariente J, Vallet-Regí M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 2004;68:105–9.
Lee C, Cheng S, Huang I, Souris JS, Yang C, Mou C, et al. Intracellular pH‐responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew Chem. 2010;122:8390–5.
Ambrogi V, Perioli L, Marmottini F, Giovagnoli S, Esposito M, Rossi C. Improvement of dissolution rate of piroxicam by inclusion into MCM-41 mesoporous silicate. Eur J Pharm Sci. 2007;32:216–22.
Cavallaro G, Pierro P, Palumbo FS, Testa F, Pasqua L, Aiello R. Drug delivery devices based on mesoporous silicate. Drug Deliv. 2004;11:41–6.
Heikkilä T, Salonen J, Tuura J, Kumar N, Salmi T, Murzin DY, et al. Evaluation of mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 materials as API carriers for oral drug delivery. Drug Deliv. 2007;14:337–47.
Vallet-Regi M, Ramila A, Del Real R, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13:308–11.
He Q, Shi J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem. 2011;21:5845–55.
Van Speybroeck M, Mellaerts R, Martens JA, Annaert P, Van den Mooter G, Augustijns P. Ordered mesoporous silica for the delivery of poorly soluble drugs. Controlled release in oral drug delivery: Springer; 2011. p 203–19.
Zhang C, Hou T, Chen J, Wen L. Preparation of mesoporous silica microspheres with multi-hollow cores and their application in sustained drug release. Particuology. 2010;8:447–52.
Mao C, Wang F, Cao B. Controlling nanostructures of mesoporous silica fibers by supramolecular assembly of genetically modifiable bacteriophages. Angew Chem. 2012;124:6517–21.
Sathe TR, Agrawal A, Nie S. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem. 2006;78:5627–32.
Ahern RJ, Crean AM, Ryan KB. The influence of supercritical carbon dioxide (SC-CO2) processing conditions on drug loading and physicochemical properties. Int J Pharm. 2012;439:92–9.
Mellaerts R, Aerts CA, Van Humbeeck J, Augustijns P, Van den Mooter G, Martens JA. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem Commun. 2007:1375–7.
Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm. 2012;9:505–13.
Nafisi S, Schäfer-Korting M, Maibach HI. Perspectives on percutaneous penetration: silica nanoparticles. Nanotoxicology. 2015;9:643–57.
Berlier G, Gastaldi L, Ugazio E, Miletto I, Iliade P, Sapino S. Stabilization of quercetin flavonoid in MCM-41 mesoporous silica: positive effect of surface functionalization. J Colloid Interface Sci. 2013;393:109–18.
Berlier G, Gastaldi L, Sapino S, Miletto I, Bottinelli E, Chirio D, et al. MCM-41 as a useful vector for rutin topical formulations: synthesis, characterization and testing. Int J Pharm. 2013;457:177–86.
Gastaldi L, Ugazio E, Sapino S, Iliade P, Miletto I, Berlier G. Mesoporous silica as a carrier for topical application: the Trolox case study. Phys Chem Chem Phys. 2012;14:11318–26.
Ambrogi V, Perioli L, Marmottini F, Latterini L, Rossi C, Costantino U. Mesoporous silicate MCM-41 containing organic ultraviolet ray absorbents: preparation, photostability and in vitro release. J Phys Chem Solids. 2007;68:1173–7.
Chen-Yang YW, Chen YT, Li CC, Yu HC, Chuang YC, Su JH, et al. Preparation of UV-filter encapsulated mesoporous silica with high sunscreen ability. Mater Lett. 2011;65:1060–2.
Ambrogi V, Perioli L, Pagano C, Marmottini F, Moretti M, Mizzi F, et al. Econazole nitrate‐loaded MCM‐41 for an antifungal topical powder formulation. J Pharm Sci. 2010;99:4738–45.
Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug‐delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794–805.
Xue Z, Liang D, Li Y, Long Z, Pan Q, Liu X, et al. Silica nanoparticle is a possible safe carrier for gene therapy. Chin Sci Bull. 2005;50:2323–7.
Lee C, Lo L, Mou C, Yang C. Synthesis and characterization of positive‐charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti‐inflammatory drug. Adv Funct Mater. 2008;18:3283–92.
Hu C, Yu L, Zheng Z, Wang J, Liu Y, Jiang Y, et al. Tannin as a gatekeeper of pH-responsive mesoporous silica nanoparticles for drug delivery. RSC Adv. 2015;5:85436–41.
Barrabino A. Synthesis of mesoporous silica particles with control of both pore diameter and particle size. Master thesis. Chalmers University of Technology. 2011.
Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.
Cicuéndez M, Izquierdo-Barba I, Portolés MT, Vallet-Regí M. Biocompatibility and levofloxacin delivery of mesoporous materials. Eur J Pharm Biopharm. 2013;84:115–24.
He Q, Shi J, Zhu M, Chen Y, Chen F. The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater. 2010;131:314–20.
Cauda V, Schlossbauer A, Bein T. Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater. 2010;132:60–71.
He Q, Zhang Z, Gao Y, Shi J, Li Y. Intracellular localization and cytotoxicity of spherical mesoporous silica nano‐and microparticles. Small. 2009;5:2722–9.
Zhai W, He C, Wu L, Zhou Y, Chen H, Chang J, et al. Degradation of hollow mesoporous silica nanoparticles in human umbilical vein endothelial cells. J Biomed Mater Res B Appl Biomater. 2012;100:1397–403.
Chen G, Teng Z, Su X, Liu Y, Lu G. Unique biological degradation behavior of Stöber mesoporous silica nanoparticles from their interiors to their exteriors. J Biomed Nanotechnol. 2015;11:722–9.
Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, et al. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano. 2010;4:699–708.
He Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small. 2011;7:271–80.
Charnay C, Bégu S, Tourné-Péteilh C, Nicole L, Lerner DA, Devoisselle JM. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm. 2004;57:533–40.
Shen S, Ng WK, Chia L, Dong Y, Tan RB. Stabilized amorphous state of ibuprofen by co‐spray drying with mesoporous SBA‐15 to enhance dissolution properties. J Pharm Sci. 2010;99:1997–2007.
Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel AE, et al. Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobiotechnology. 2007;3:89–95.
Vallet-Regí M, Doadrio JC, Doadrio AL, Izquierdo-Barba I, Pérez-Pariente J. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics. 2004;172:435–9.
Izquierdo-Barba I, Martinez Á, Doadrio AL, Pérez-Pariente J, Vallet-Regí M. Release evaluation of drugs from ordered three-dimensional silica structures. Eur J Pharm Sci. 2005;26:365–73.
Hong S, Shen S, Tan DCT, Ng WK, Liu X, Chia LS, et al. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods. Drug Deliv. 2016;23:316–27.
Waters LJ, Hussain T, Parkes G, Hanrahan JP, Tobin JM. Inclusion of fenofibrate in a series of mesoporous silicas using microwave irradiation. Eur J Pharm Biopharm. 2013;85:936–41.
Lebold T. Nanostructured silica materials as drug-delivery systems for doxorubicin: single molecule and cellular studies. Nano Lett. 2009;9:2877–83.
Rosenholm JM, Peuhu E, Bate‐Eya LT, Eriksson JE, Sahlgren C, Lindén M. Cancer‐cell‐specific induction of apoptosis using mesoporous silica nanoparticles as drug‐delivery vectors. Small. 2010;6:1234–41.
Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, et al. Co‐delivery of doxorubicin and Bcl‐2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug‐resistant cancer cells. Small. 2009;5:2673–7.
Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013;7:994–1005.
Gary-Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm. 2012;423:509–15.
Halamová D, Badaničová M, Zeleňák V, Gondová T, Vainio U. Naproxen drug delivery using periodic mesoporous silica SBA-15. Appl Surf Sci. 2010;256:6489–94.
Radin S, Chen T, Ducheyne P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials. 2009;30:850–8.
Izquierdo-Barba I, Ruiz-González L, Doadrio JC, González-Calbet JM, Vallet-Regí M. Tissue regeneration: a new property of mesoporous materials. Solid State Sci. 2005;7:983–9.
Horcajada P, Rámila A, Boulahya K, González-Calbet J, Vallet-Regí M. Bioactivity in ordered mesoporous materials. Solid State Sci. 2004;6:1295–300.
Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM. Revisiting silica based ordered mesoporous materials: medical applications. J Mater Chem. 2006;16:26–31.
Shadjou N, Hasanzadeh M. Bone tissue engineering using silica-based mesoporous nanobiomaterials: recent progress. Mater Sci Eng C. 2015;55:401–9.
Vallet-Regí M, Izquierdo-Barba I, Rámila A, Pérez-Pariente J, Babonneau F, González-Calbet JM. Phosphorous-doped MCM-41 as bioactive material. Solid State Sci. 2005;7:233–7.
Mortera R, Onida B, Fiorilli S, Cauda V, Brovarone CV, Baino F, et al. Synthesis and characterization of MCM-41 spheres inside bioactive glass–ceramic scaffold. Chem Eng J. 2008;137:54–61.
Luo Z, Deng Y, Zhang R, Wang M, Bai Y, Zhao Q, et al. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Colloids Surf B. 2015;131:73–82.
Hartono SB, Yu M, Gu W, Yang J, Strounina E, Wang X, et al. Synthesis of multi-functional large pore mesoporous silica nanoparticles as gene carriers. Nanotechnology. 2014;25:055701.
Kim M, Na H, Kim Y, Ryoo S, Cho HS, Lee KE, et al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano. 2011;5:3568–76.
Slowing II, Vivero-Escoto JL, Wu C, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60:1278–88.
Hartono SB, Phuoc NT, Yu M, Jia Z, Monteiro MJ, Qiao S, et al. Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery. J Mater Chem B. 2014;2:718–26.
Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine—recent advances. Adv Drug Deliv Rev. 2013;65:689–702.
Brevet D, Hocine O, Delalande A, Raehm L, Charnay C, Midoux P, et al. Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles. Int J Pharm. 2014;471:197–205.
Na H, Kim M, Park K, Ryoo S, Lee KE, Jeon H, et al. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small. 2012;8:1752–61.
Qian KK, Suib SL, Bogner RH. Spontaneous crystalline‐to‐amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 2: amorphization capacity and mechanisms of interaction. J Pharm Sci. 2011;100:4674–86.
Limnell T, Santos HA, Mäkilä E, Heikkilä T, Salonen J, Murzin DY, et al. Drug delivery formulations of ordered and nonordered mesoporous silica: comparison of three drug loading methods. J Pharm Sci. 2011;100:3294–306.
Ahern RJ, Hanrahan JP, Tobin JM, Ryan KB, Crean AM. Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery. Eur J Pharm Sci. 2013;50:400–9.
Ivanov S, Zhuravsky S, Yukina G, Tomson V, Korolev D, Galagudza M. In vivo toxicity of intravenously administered silica and silicon nanoparticles. Materials. 2012;5:1873–89.
Petushkov A, Ndiege N, Salem AK, Larsen SC. Toxicity of silica nanomaterials: zeolites, mesoporous silica, and amorphous silica nanoparticles. Adv Mol Tox. 2010;4:223–66.
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24:1504–34.
Slowing II, Wu C, Vivero‐Escoto JL, Lin VS. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small. 2009;5:57–62.
Malvindi MA, Brunetti V, Vecchio G, Galeone A, Cingolani R, Pompa PP. SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing. Nanoscale. 2012;4:486–95.
Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch‐Volders M, et al. Size‐dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5:846–53.
Di Pasqua AJ, Sharma KK, Shi Y, Toms BB, Ouellette W, Dabrowiak JC, et al. Cytotoxicity of mesoporous silica nanomaterials. J Inorg Biochem. 2008;102:1416–23.
Tao Z, Morrow MP, Asefa T, Sharma KK, Duncan C, Anan A, et al. Mesoporous silica nanoparticles inhibit cellular respiration. Nano Lett. 2008;8:1517–26.
Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34:2565–75.
Luo G, Chen W, Liu Y, Lei Q, Zhuo R, Zhang X. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci Rep. 2014;4:1–10.
Zhu C, Wang X, Lin Z, Xie Z, Wang X. Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles. J Food Drug Anal. 2014;22:18–28.
Jia L, Li Z, Shen J, Zheng D, Tian X, Guo H, et al. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Int J Pharm. 2015;489:318–30.
Ma J, Lin H, Xing R, Li X, Bian C, Xiang D, et al. Synthesis of pH-responsive mesoporous silica nanotubes for controlled release. J Sol Gel Sci Technol. 2014;69:364–9.
Bernardos A, Aznar E, Marcos MD, Martínez‐Máñez R, Sancenón F, Soto J, et al. Enzyme‐responsive controlled release using mesoporous silica supports capped with lactose. Angew Chem. 2009;121:5998–6001.
Sun R, Wang W, Wen Y, Zhang X. Recent advance on mesoporous silica nanoparticles-based controlled release system: intelligent switches open up new horizon. Nanomaterials. 2015;5:2019–53.
ACKNOWLEDGMENTS
The authors would like to thank Minia University represented by Egyptian Culture Centre and Educational Bureau in London. The authors would also like to thank the EPSRC (EPSRC EHDA Network) for their support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Guest Editors: Dr. Z Ahmad and Prof. M Edirisinghe
Rights and permissions
About this article
Cite this article
Sayed, E., Haj-Ahmad, R., Ruparelia, K. et al. Porous Inorganic Drug Delivery Systems—a Review. AAPS PharmSciTech 18, 1507–1525 (2017). https://doi.org/10.1208/s12249-017-0740-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1208/s12249-017-0740-2
KEY WORDS
- drug delivery
- inorganic
- mesoporous
- nanoparticles
- porous materials