Development of a Discriminative In Vitro Release Test for Rivastigmine Transdermal Patches Using Pharmacopeial Apparatuses: USP 5 and USP 6

Abstract

The aim of this study was to develop and validate a discriminating in vitro release test to evaluate rivastigmine transdermal patches. The Exelon® Patch was chosen as a model transdermal product. The studies of in vitro release were designed to determine the impact of the official apparatus chosen (USP apparatus 5 and USP apparatus 6), the rotation speed, and the dissolution medium characteristics on the rivastigmine release profile from transdermal patches. Patches with different drug release profiles were tested in order to evaluate the discriminating power of the in vitro release test developed and validated. Variables such as the apparatus type, the dissolution medium, and the rotation speed have a significant influence on the drug release characteristics from a transdermal patch. The in vitro release methodologies using the USP apparatus 5 at 50 rpm and USP apparatus 6 at 25 rpm using the medium phosphate-buffered saline pH 7.4 were considered discriminative and adequate to characterize the rivastigmine (RV) release from a commercial transdermal patch, Exelon® Patch.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Pastore MN, Kalia YN, Horstmann M, Roberts MS. Transdermal patches: history, development and pharmacology. Br J Pharmacol. 2015;172:2179–209.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wiedersberg S, Guy RH. Transdermal drug delivery: 30 + years of war and still fighting! J Control Release. 2014;190:150–6.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Stegeman S. Considerations for topical and transdermal drug delivery in older adults. Dev. Drug Prod. Aging Society: From Concept to Prescribing (AAPS Advances in the Pharmaceutical Sciences Series) 1st ed. 2016.

  5. 5.

    Allen Jr LV, Popovich NG, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. 8th ed. New York: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  6. 6.

    EMA. Guideline on quality of transdermal patches. In: European Medicines Agency, EMA/CHMP/QWP/911254/2011 2, Quality Working Party (QWP). (2012).

  7. 7.

    Anand O, Yu LX, Conner DP, Davit BM. Dissolution testing for generic drugs: an FDA perspective. The AAPS J. 2011;13(3):328–35.

    Article  PubMed  Google Scholar 

  8. 8.

    Chang R-K, Raw A, Lionberger R, Yu LX. Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013;15(1):41–52.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    European Pharmacopoeia. Chapter <2.9.4 > Dissolution test for transdermal patches. 8th Ed. Council of Europe, Strasbourg; 2014.

  10. 10.

    USP. (2016a). USP 39 NF 34. <724 > Drug release. In The United States Pharmacopeia and National Formulary.

  11. 11.

    USP. (2016b). USP 39 NF 34. Monograph. In: The United States Pharmacopeia and National Formulary.

  12. 12.

    Hanson R, Gray V. Handbook of dissolution testing. 3rd Ed. Hockessin DE. Dissolution Technologies, Inc.; 2004.

  13. 13.

    Brown CK, Friedel HD, Barker AR, Buhse LF, Keitel S, Cecil TL, Kraemer J, Morris M, Reppas C, Stickelmeyer MP, Yomota C, Shah VP. FIP/AAPS Joint Workshop Report: dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2011; 1–13.

  14. 14.

    Vaghela B, Kayastha R, Bhatt N, Pathak N, Rathod D. Development and validation of dissolution procedures. J Appl Pharm Sci. 2011;01(03):50–6.

    Google Scholar 

  15. 15.

    Rozet E, Ziemons E, Marini RD, Boulanger B, Hubert P. Validation of analytical methods involved in dissolution assays: acceptance limits and decision methodologies. Anal Chim Acta. 2012;751:44–51.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Shah VP, Tymes NW, Yamamoto LA, Skelly JP. In vitro dissolution profile of transdermal nitroglycerin patches using paddle method. Int J Pharm. 1986;32:243–50.

    CAS  Article  Google Scholar 

  17. 17.

    Shah VP, Tymes NW, Skelly JP. Comparative in vitro release profiles of marketed nitroglycerin patches by different dissolution methods. J Control Release. 1988;7:79–86.

    CAS  Article  Google Scholar 

  18. 18.

    Shah VP, Tymes NW, Skelly JP. In vitro release profiles of clonidine transdermal therapeutic systems and scopolamine transdermal patches. Pharm Res. 1989;6(4):346–51.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Hadgraft J, Lewis D, Beutner D, Wolff HM. In vitro assessments of transdermal devices containing nitroglycerin. Int J Pharm. 1991;73:125–30.

    CAS  Article  Google Scholar 

  20. 20.

    Hadgraft J, Beutner D, Wolff HM. In vivo-in vitro comparisons in the transdermal delivery of nitroglycerin. Int J Pharm. 1993;89:1–4.

    Article  Google Scholar 

  21. 21.

    Olivier JC, Rabouan S, Couet W. In vitro comparative studies of two marketed transdermal nicotine delivery systems: Nicopatch® and Nicorette®. Int J Pharm. 2003;252:133–40.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Cai B, Söderkvist K, Engqvist H, Bredenberg S. A new drug release method in early development of transdermal drug delivery systems. Pain Res Treatm. 2012; 1–6.

  23. 23.

    Azarmi S, Roa W, Löbenberg R. Current perspectives in dissolution testing of conventional and novel dosage forms. Int J Pharm. 2007;328:12–21.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    FDA. (1997a). Guidance for industry: SUPAC-SS nonsterile semisolid dosage forms: scale-up and postapproval changes: chemistry, manufacturing, and controls; In vitro release testing and In vivo Bioequivalence Documentation.

  25. 25.

    FDA. (1997b). Guidance for industry: extended release oral dosage forms: development, evaluation and application of in vitro/in vivo correlations.

  26. 26.

    Winblad B, Machado JC. Use of rivastigmine transdermal patch in the treatment of Alzheimer’s disease. Expert Opin Drug Deliv. 2008;5:1377–86.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Oertel W, Ross JS, Eggert K, Adler G. Rationale for transdermal drug administration in Alzheimer disease. Neurology. 2007;69(4):S4–9.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    FDA. (2016). Food and Drug Administration, Drug Databases: dissolution methods: rivastigmine transdermal. Available in: http://www.accessdata.fda.gov/scripts/cder/dissolution/index.cfm.

  29. 29.

    Craparo EF, Pitarresi G, Bondì ML, Casaletto MP, Licciardi M, Giammona G. A nanoparticulate drug-delivery system for rivastigmine: physico-chemical and in vitro biological characterization. Macromol Biosci. 2008;8:247–59.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Simon A, Amaro MI, Healy AM, Cabral LM, Sousa VP. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int J Pharm. 2016;512:234–41.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Simon A, Amaro MI, Healy AM, Cabral LM, Sousa VP. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate. Int J Pharm. 2016;501:124–38.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Moore JW, Flanner HH. Mathematical comparison of dissolution profile. Pharm Technol. 1996;20(6):64–7.

    Google Scholar 

  33. 33.

    ICH. (2005). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Validation of analytical procedures: text and methodology, Q2(R1).

  34. 34.

    USP. (2016c). USP 39 NF 34. <1092 > The dissolution procedure: development and validation. In: The United States Pharmacopeia and National Formulary.

  35. 35.

    Raheem MA, Wang Z, Wolf ECG. Process for the preparation of phenylcarbamates. US. Pat. Appl. US 7,884,121 B2.2011; 1–11.

  36. 36.

    Tannergren C, Bergendal A, Lennernäs H, Abrahamsson B. Toward an increased understanding of the barriers to colonic drug absorption in humans: implications for early controlled release candidate assessment. Mol Pharm. 2009;6:60–73.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Joshi V, Brewster D, Colonero P. In vitro diffusion studies in transdermal research: a synthetic membrane model in place of human skin. Drug Develop & Delivery. 2012; 1–4.

  38. 38.

    Uchida T, Kadhum WR, Kanai S, Todo H, Oshizaka T, Sugibayashi K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur J Pharm Sci. 2015;67:113–8.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Adams E, De Maesschalck R, De Spiegeleer B, Vander Heyden Y, Smeyers-Verbeke J, Massart DL. Evaluation of dissolution profiles using principal component analysis. Int J Pharm. 2001;212:41–53.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Maggio RM, Castellano PM, Kaufman TS. A new principal component analysis-based approach for testing “similarity” of drug dissolution profiles. Eur J Pharm Sci. 2008;34:66–77.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Duan JZ, Riviere K, Marroum P. In vivo bioequivalence and in vitro similarity factor (f2) for dissolution profile comparisons of extended release formulations: how and when do they match? Pharm Res. 2011;28:1144–56.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Yuksel N, Kanik AE, Baykara T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int J Pharm. 2000;209:57–67.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Van Buskirk GA, Gonzalez MA, Shah VP, Barnhardt S, Barrett C, Berge S. Scale up of adhesive transdermal drug delivery systems. Pharm Res. 1997;14:848–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A. Simon thanks CAPES for the support to publish this article under Grant No. 3372/13-8. This material is based upon works supported by the CAPES (Brasília, Brazil), FAPERJ (Rio de Janeiro, Brazil), and the Science Foundation Ireland under Grant No. 12/RC/2275.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valeria Pereira de Sousa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simon, A., Amaro, M.I., Healy, A.M. et al. Development of a Discriminative In Vitro Release Test for Rivastigmine Transdermal Patches Using Pharmacopeial Apparatuses: USP 5 and USP 6. AAPS PharmSciTech 18, 2561–2569 (2017). https://doi.org/10.1208/s12249-017-0738-9

Download citation

KEY WORDS

  • dissolution test
  • Franz diffusion cell
  • patch
  • pharmacopeial apparatus
  • rivastigmine