Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function


Lipid nanoparticles have shown many advantages for treatment/prevention of skin disorders with damaged skin barrier function. Beeswax is a favorable candidate for the development of nanosystems in the cosmetic and dermatological fields because of its advantages for the development of products for topical application. In the present study, beeswax-based nanoparticles (BNs) were prepared using the hot melt microemulsion technique and incorporated to a gel-cream formulation. The formulation was subsequently evaluated for its rheological stability and effect on stratum corneum water content (SCWC) and transepidermal water loss (TEWL) using in vivo biophysical techniques. BNs resulted in mean particle size of 95.72 ± 9.63 nm and zeta potential of −9.85 ± 0.57 mV. BN-loaded formulation showed shear thinning behavior, well adjusted by the Herschel-Bulkley model, and a small thixotropy index that were stable for 28 days at different temperatures. BN-loaded formulation was also able to simultaneously decrease the TEWL and increase the SCWC values 28 days after treatment. In conclusion, the novel beeswax-based nanoparticles showed potential for barrier recovery and open the perspective for its commercial use as a novel natural active as yet unexplored in the field of dermatology and cosmetics for treatment of skin diseases with damaged skin barrier function.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Machado M, Hadgraft J, Lane ME. Assessment of the variation of skin barrier function with anatomic site, age, gender and ethinicity. Int J Cosmet Sci. 2010;32(6):397–409. doi:10.1111/j.1468-2494.2010.00587.x.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Kim DG, Park WR, Kim JH, Cho EC, An EJ, Kim JW, et al. Fabrication of pseudo-ceramide-based lipid microparticles for recovery of skin barrier function. Colloid Surf B Biointerfaces. 2012;94:236–41. doi:10.1016/j.colsurfb.2012.01.049.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Keck CM, Anantaworasakul P, Patel M, Okonogi S, Singh KK, Roessner D, et al. A new concept for the treatment of atopic dermatitis: silver-nanolipid complex (sNLC). Int J Pharm. 2014;462(1–2):44–51. doi:10.1016/j.ijpharm.2013.12.044.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Zhang J, Smith E. Percutaneous permeation of betamethasone 17-valerate incorporated in lipid nanoparticles. J Pharm Sci. 2011;100(3):896–903. doi:10.1002/jps.22329.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(1):131–55. doi:10.1016/S0169-409X(02)00118-7.

    Article  Google Scholar 

  6. 6.

    Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84. doi:10.1016/j.ijpharm.2008.10.003.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ng S-F, Anuwi N-A, Tengku-Ahmad T-N. Topical lyogel containing corticosteroid decreases ige expression and enhances the therapeutic efficacy against atopic eczema. AAPS PharmSciTech. 2014;16(3):656–63. doi:10.1208/s12249-014-0248-y.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zamarioli CM, Martins R, Carvalho EC, Freitas LAP. Nanoparticles containing curcuminoids (Curcuma longa): development of topical delivery formulation. Rev Bras Farm. 2015;25(1):53–60. doi:10.1016/j.bjp.2014.11.010.

    CAS  Article  Google Scholar 

  9. 9.

    Montenegro L, Sinico C, Castangia I, Carbone C, Puglisi G. Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: In vitro evaluation. Int J Pharm. 2012;434(1–2):169–74. doi:10.1016/j.ijpharm.2012.05.046.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kejlováa K, Kašpárková V, Krsek D, Jírová D, Kolářová H, Dvořáková M, et al. Characteristics of silver nanoparticles in vehicles for biological applications. Int J Pharm. 2015;496(2):878–85. doi:10.1016/j.ijpharm.2015.10.024.

    Article  Google Scholar 

  11. 11.

    Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49(2):311–22. doi:10.1016/j.ejps.2013.03.013.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Gowda DV, Gupta VK, Khan MS, Bathool A. Encapsulation of clozapine into beeswax microspheres: preparation, characterization and release kinetics. Int J PharmTech Res. 2011;3(4):2199–207.

    CAS  Google Scholar 

  13. 13.

    Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipidnanoparticles made from beeswax and carnauba wax. Nanomedicine. 2010;6(6):753–9. doi:10.1016/j.nano.2010.06.003.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Attama AA, Schicke BC, Muller-Goymann CC. Further characterization of theobroma oil–beeswax admixtures as lipid matrices for improved drug delivery systems. Eur J Pharma Biopharm. 2006;64(3):294–306. doi:10.1016/j.ejpb.2006.06.010.

    CAS  Article  Google Scholar 

  15. 15.

    Nosari ABFL, Lima JF, Serra OA, Freitas LAP. Improved green coffee oil antioxidant activity for cosmetical purpose by spray drying microencapsulation. Rev Bras Farm. 2015;25(3):307–11. doi:10.1016/j.bjp.2015.04.006.

    CAS  Article  Google Scholar 

  16. 16.

    Attama AA, Muller-Goymann CC. Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity. Colloids Surf A. 2008;315(1–3):189–95. doi:10.1016/j.colsurfa.2007.07.035.

    CAS  Article  Google Scholar 

  17. 17.

    Kamairudin N, Gani SSA, Masoumi HRF, Basri M, Hashim P, Mokhtar NM, et al. Modeling of a natural lipstick formulation using an artificial neural network. RSC. 2015;5:68632–8. doi:10.1039/C5RA12749A.

    CAS  Google Scholar 

  18. 18.

    Elder RL. Final report on the safety assessment of candelilla wax, carnauba wax, Japan wax, and beeswax. Int J Toxicol. 1984;3(3):1–41. doi:10.3109/10915818409010515.

    Google Scholar 

  19. 19.

    Rosiaux Y, Jannin V, Hughes S, Marchaud D. Solid lipid excipients—matrix agents for sustained drug delivery. J Control Release. 2014;188:18–30. doi:10.1016/j.jconrel.2014.06.004.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extrated from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci. 2015;221:60–70. doi:10.1016/j.cis.2015.04.006.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm. 2008;363(1–2):132–8. doi:10.1016/j.ijpharm.2008.06.028.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Freitas LAP, Zamarioli CM, Martins RM. Brazilian Patent Office. INPI—Instituto Nacional da Propriedade Industrial. Processo de obtenção de nanopartículas lipídicas sólidas contendo curcuminóides, nanopartículas lipídicas sólidas contendo curcuminóides e uso das mesmas. Registered patent number: BR1020150090170, 22/04/2015, Brazil. 2015.

  23. 23.

    Kim J, Sonh JY, Lee E-J, Park S-K. Rheological properties and microstructures of carbopol gel network system. Colloid Polym Sci. 2003;281:614–23. doi:10.1007/s00396-002-0808-7.

    CAS  Article  Google Scholar 

  24. 24.

    Zetasizer Nano-ZS. User Instructions. NBTC User Instructions. 2009.

  25. 25.

    Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96. doi:10.1016/S0169-409X(01)00105-3.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Muller RH, Maèder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77. doi:10.1016/S0169-409X(02)00118-7.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015;11(7):1603–11. doi:10.1016/j.nano.2015.04.015.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Saurabh CK, Gupta S, Variyar P, Sharma A. Effect of addition of nanoclay, beeswax, tween-80 and glycerol on physicochemical properties of guar gum films. Ind Crop Prod. 2016;89:109–18. doi:10.1016/j.indcrop.2016.05.003.

    CAS  Article  Google Scholar 

  29. 29.

    Feng S, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers. J Control Release. 2001;71(1):53–69. doi:10.1016/S0168-3659(00)00364-3.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Rigo LA, da Silva CR, de Oliveira SM, Cabreira TN, de Bona da Silva C, Ferreira J, et al. Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice. Eur J Pharm Biopharm. 2015;93:11–7. doi:10.1016/j.ejpb.2015.03.020.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Raza K, Singh B, Singal P, Wadhwa S, Katare OP. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B: Biointerfaces. 2013;105:67–74. doi:10.1016/j.colsurfb.2012.12.043.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278(1):71–7. doi:10.1016/j.ijpharm.2004.02.032.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Souto EB, Muller RH, Gohla S. A novel approach based on lipid nanoparticles (SLN) for topical delivery of alpha-lipoic acid. J Microencapsul. 2005;22(6):581–92. doi:10.1080/02652040500162378.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Jenning V, Schafer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release. 2000;66(2):115–26. doi:10.1016/S0168-3659(99)00223-0.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Loo CH, Basri M, Ismail R, Lau H, Tejo B, Kanthimathi M, et al. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int J Nanomedicine. 2013;8:13–22. doi:10.2147/IJN.S35648.

    Article  PubMed  Google Scholar 

  36. 36.

    Barry BW. Rheology of dermatological vehicles. In: Dermatological Formulations—Percutaneous Absorption, Marcel Dekker, Inc., New York and Basel. 1983;18:351–396.

  37. 37.

    Gaspar LR, Maia Campos PMBG. Rheological behavior and the SPF of sunscreens. Int J Pharm. 2003;250(1):35–44.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Wagemaker TAL, Silva SAM, Leonardi GR, Maia Campos PMBG. Green Coffea arabica L. seed oil influences the stability and protective effects of topical formulations. Ind Crop Prod. 2015;63:34–40. doi:10.1016/j.indcrop.2014.09.045.

    CAS  Article  Google Scholar 

  39. 39.

    Woolfson AD, Malcolm RK, Campbell K, Jones DS, Russell JA. Rheological, mechanical and membrane penetration properties of novel dual drug systems for percutaneous delivery. J Control Release. 2000;67(2–3):395–408. doi:10.1016/S0168-3659(00)00230-3.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Silva AC, Amaral MH, González-Mira E, Santos D, Ferreira D. Solid lipid nanoparticles (SLN)-based hydrogels as potential carriers for oral transmucosal delivery of risperidone: Preparation and characterization studies. Colloids Surf B: Biointerfaces. 2012;93:241–8. doi:10.1016/j.colsurfb.2012.01.014.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Tadros TF. Application of rheology for assessment and prediction of the long-tern physical stability of emulsions. Adv Colloid Interface Sci. 2004;108–109:227–58. doi:10.1016/j.cis.2003.10.025.

    Article  PubMed  Google Scholar 

  42. 42.

    Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J Control Release. 2009;136(2):88–98. doi:10.1016/j.jconrel.2009.02.013.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Briceno MI. Rheology of suspensions and emulsions. In: Pharmaceutical Emulsions and Suspensions, Marcel Dekker, Inc., New York, 2000;557–607.

  44. 44.

    Khurana S, Bedi PMS, Jain NK. Preparation and evaluation of solid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipids. 2013;175–176:65–72. doi:10.1016/j.chemphyslip.2013.07.010.

    Article  PubMed  Google Scholar 

  45. 45.

    Contreras MJF, Diéguez AR, Soriano MMJ. Rheological characterization of hydro alcoholic gels–15% ethanol–of Carbopol® UltrezTM 10. Il Fármaco. 2001;56(1–7):437–41. doi:10.1016/S0014-827X(01)01057-6.

    Article  Google Scholar 

  46. 46.

    Güngor S, Bergisadi N. In vitro release studies on topical gel formulations of nimesulide. Pharmazie. 2003;58(2):155–6.

    PubMed  Google Scholar 

  47. 47.

    Liu W, Hu M, Liu W, Xue C, Xu H, Yang X. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int J Pharm. 2008;364(1):135–41. doi:10.1016/j.ijpharm.2008.08.013.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Akhtar N, Zaman SU, Khan BA, Amir MN, Ebrahimzadeh MA. Calendula extract: effects on mechanical parameters of human skin. Acta Pol Pharm. 2011;68(5):693–701.

    PubMed  Google Scholar 

  49. 49.

    Nakagawa N, Matsumoto M, Sakai S. In vivo measurement of the water content in the dermis by confocal Raman spectroscopy. Skin Res Technol. 2010;16(2):137–41. doi:10.1111/j.1600-0846.2009.00410.x.

    Article  PubMed  Google Scholar 

  50. 50.

    Pople PV, Singh KK. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech. 2016;7(4):E63–9. doi:10.1208/pt070491.

    Article  Google Scholar 

  51. 51.

    Dal’Belo SE, Gaspar LR, Maia Campos PMBG. Moisturizing effect of cosmetic formulations containing aloe vera extract in different concentrations assessed by skin bioengineering techniques. Skin Res Technol. 2006;12(2):241–6. doi:10.1111/j.0909-752X.2006.00155.x.

    Article  PubMed  Google Scholar 

  52. 52.

    Camargo Júnior FB, Gaspar LR, Campos PMBGM. Skin moisturizing effect of panthenol-based formulations. J Cosmet Sci. 2011;62(4):361–70.

    Google Scholar 

  53. 53.

    Chon S-H, Tannahill R, Yao X, Southall MD, Pappas A. Keratinocyte differentiation and up regulation of ceramide synthesis induced by an oat lipid extract via the activation of PPAR pathways. Exp Dermatol. 2015;24(4):290–5. doi:10.1111/exd.12658.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Gianeti MD, Maia Campos PMBG. Efficacy evaluation of a multifunctional cosmetic formulation: the benefits of a combination of active antioxidant substances. Molecules. 2014;19(11):18268–82. doi:10.3390/molecules191118268.

    Article  PubMed  Google Scholar 

  55. 55.

    Gaspar LR, Camargo Jr FB, Gianeti MD, Maia Campos PM. Evaluation of dermatological effects of cosmetic formulations containing Saccharomyces cerevisiae extract and vitamins. Food Chem Toxicol. 2008;46(11):3493–500. doi:10.1016/j.fct.2008.08.028.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Maia Campos PMBG, Gianeti MD, Camargo Jr FB, Gaspar LR. Application of tetra-isopalmitoyl ascorbic acid in cosmetic formulations: stability studies and in vivo efficacy. Eur J Pharm Biopharm. 2012;82(3):580–6. doi:10.1016/j.ejpb.2012.08.009.

    CAS  Article  PubMed  Google Scholar 

Download references


The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil) for the financial support to this study.

Author information



Corresponding author

Correspondence to Patrícia Maria Berardo Gonçalves Maia Campos.

Ethics declarations

Disclosure of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Souza, C., de Freitas, L.A.P. & Maia Campos, P.M.B.G. Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function. AAPS PharmSciTech 18, 2505–2516 (2017).

Download citation


  • beeswax
  • clinical efficacy
  • lipid nanoparticles
  • rheology
  • skin barrier function