Skip to main content
Log in

DEM Modelling of Granule Rearrangement and Fracture Behaviours During a Closed-Die Compaction

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The closed-die compaction behaviour of D-mannitol granules has been simulated by the discrete element method (DEM) to investigate the granule rearrangement and fracture behaviour during compaction which affects the compactibility of the tablet. The D-mannitol granules produced in a fluidized bed were modelled as agglomerates of primary particles connected by linear spring bonds. The validity of the model granule used in the DEM simulation was demonstrated by comparing to the experimental results of a uniaxial compression test. During uniaxial compression, the numerical results of the force-displacement curve corresponded reasonably well to the experimental data. The closed-die compaction of the modelled granules was carried out to investigate the rearrangement and fracture behaviours of the granule at different upper platen velocities. The forces during closed-die compaction calculated by DEM fluctuated in the low-pressure region due to the rearrangement of granules. A Heckel analysis showed that the force fluctuation occurred at the initial bending region of the Heckel plot, which represents the granule rearrangement and fracture. Furthermore, the upper platen velocity affected the trend of compaction forces, which can lead to compaction failure due to capping. These results could contribute to designing the appropriate granules during closed-die compaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Beekman WJ, Meesters GMH, Becker T, Gaertner A, Gebert M, Scarlett B. Failure mechanism determination for industrial granules using a repeated compression test. Powder Technol. 2003;130(1-3):367–76.

    Article  CAS  Google Scholar 

  2. Antonyuk S, Tomas J, Heinrich S, Morl L. Breakage behavior of spherical granulates by compression. Chem Eng Sci. 2005;60(14):4031–44.

    Article  CAS  Google Scholar 

  3. Antonyuk S, Heinrich S, Tomas J, Deen NG, Buijtenen MS, Kuipers JAM. Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granul Matter. 2010;12(1):15–47.

    Article  CAS  Google Scholar 

  4. Eckhard S, Nebelung M. Investigations of the correlation between granule structure and deformation behavior. Powder Technol. 2011;206(1-2):79–87.

    Article  CAS  Google Scholar 

  5. Sheng Y, Briscoe BJ, Maung R, Rovea C. Compression of polymer bound alumina agglomerates at athe micro deformation scale. Powder Technol. 2004;140(3):228–39.

    Article  CAS  Google Scholar 

  6. Muller P, Seeger M, Tomas J. Compression and breakage behavior of γ-Al2O3 granules. Powder Technol. 2013;237:125–33.

    Article  Google Scholar 

  7. Russell A, Muller P, Shi H, Tomas J. Influences of loading rate and preloading on the mechanical properties of dry elasto-plastic granules under compression. AIChE J. 2014;60(12):4037–50.

    Article  CAS  Google Scholar 

  8. Subero J, Ning Z, Ghadiri M, Thornton C. Effect of interface energy on the impact strength of agglomerates. Powder Technol. 1999;105(1-3):66–73.

    Article  CAS  Google Scholar 

  9. Thornton C, Ciomocos MT, Adams MJ. Numerical simulation of agglomerate impact breakage. Powder Technol. 1999;105(1-3):74–82.

    Article  CAS  Google Scholar 

  10. Kafui KD, Thornton C. Numerical simulation of impact breakage of a spherical crystalline agglomerate. Powder Technol. 2000;109(1-3):113–32.

    Article  CAS  Google Scholar 

  11. Moreno R, Ghadiri M, Antony SJ. Effect of the impact angle on the breakage of agglomerates: a numerical study using DEM. Powder Technol. 2003;130(1-3):132–7.

    Article  CAS  Google Scholar 

  12. Golchert, D., Moreno, R., Ghadiri, M., Litster, J., Effect of granule morphology on breakage behaviour during compression, Powder Technol. 2004;143-144:84-96.

  13. Thornton C, Ciomocos MT, Adams MJ. Numerical simulations of diametrical compression tests on agglomerates. Powder Technol. 2004;140(3):258–67.

    Article  CAS  Google Scholar 

  14. Antonyuk S, Khanal M, Tomas J, Heinrich S, Morl L. Impact breakage of spherical granules: experimental study and DEM simulation. Chem Eng Process. 2006;45(10):838–56.

    Article  CAS  Google Scholar 

  15. Antonyuk S, Palis S, Heinrich S. Breakage behaviour of agglomerates and crystals by static loading and impact. Powder Technol. 2011;206(1-2):88–98.

    Article  CAS  Google Scholar 

  16. Metzger MJ, Glasser BJ. Numerical investigation of the breakage of bonded agglomerates during impact. Powder Technol. 2012;217:304–14.

    Article  CAS  Google Scholar 

  17. Schilde C, Burmeister CF, Kwade A. Measurement and simulation of micromechanical properties of nanostructured aggregates via nanoindentation and DEM-simulation. Powder Technol. 2014;259:1–13.

    Article  CAS  Google Scholar 

  18. Henley KJ, O’Sullivan C, Oliveira JC, Cronin K, Byrne EP. Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol. 2011;210(3):230–40.

    Article  Google Scholar 

  19. Henley KJ, O’Sullivan C, Byrne EP, Cronin K. Discrete element modelling of the quasi-static uniaxial compression of individual infant formula agglomerates. Particuology. 2012;10(5):523–31.

    Article  Google Scholar 

  20. Heckel RW. Density-pressure relationships in powder compaction. Trans Metall Soc AIME. 1961;221:671–5.

    CAS  Google Scholar 

  21. Heckel RW. An analysis of powder compaction phenomena. Trans Metall Soc AIME. 1961;221:1001–8.

    Google Scholar 

  22. Celik M. Overview of compaction data analysis techniques. Drug Dev Ind Pharm. 1992;18(6-7):767–810.

    Article  CAS  Google Scholar 

  23. Hassanpour A, Ghadiri M. Distinct element analysis and experimental evaluation of the Heckel analysis of bulk powder compression. Powder Technol. 2004;141(3):251–61.

    Article  CAS  Google Scholar 

  24. Samimi A, Hassanpour A, Ghadiri M. Single and bulk compressions of soft granules: experimental study and DEM evaluation. Chem Eng Sci. 2005;60(14):3993–4004.

    Article  CAS  Google Scholar 

  25. Persson AS, Frenning G. An experimental evaluation of the accuracy to simulate granule bed compression using the discrete element method. Powder Technol. 2012;219:249–56.

    Article  CAS  Google Scholar 

  26. Siiria SM, Antikainen O, Heinamaki J, Yliruusi J. 3D simulation of internal tablet strength during tableting. AAPS PharmSciTech. 2011;12(2):593–602.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mehrotra A, Chaudhuri B, Faqih A, Tomassone MS, Muzzio FJ. A modeling approach for understanding effects of powder flow properties on tablet weight variability. Powder Technol. 2009;188(3):295–300.

    Article  CAS  Google Scholar 

  28. Martin CL, Bouvard D. Discrete element simulations of the conpaction of aggregated ceramic powders. J Am Ceram Soc. 2006;89(11):3379–87.

    Article  CAS  Google Scholar 

  29. Balakrishnan A, Pizette P, Martin CL, Joshi SV, Saha BP. Effect of particle size in aggregated and agglomerated ceramic powders. Acta Mater. 2010;58(3):802–12.

    Article  CAS  Google Scholar 

  30. Garr JSM, Rubinstein MH. An investigation into the capping of paracetamol at increasing speeds of compression. Int J Pharm. 1991;72(2):117–22.

    Article  CAS  Google Scholar 

  31. Furukawa R, Chen Y, Horiguchi A, Takagaki K, Nishi J, Konishi A, et al. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets during a diametrical compression test. Int J Pharm. 2015;493(1-2):182–91.

    Article  CAS  PubMed  Google Scholar 

  32. Bika D, Tardos GI, Panmai S, Farber L, Michaels J. Strength and morphology of solid bridges in dry granules of pharmaceutical powders. Powder Technol. 2005;150(2):104–16.

    Article  CAS  Google Scholar 

  33. Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique. 1979;29(1):47–65.

    Article  Google Scholar 

  34. Mindlin RD. Compliance of elastic bodies in contact. J Appl Mech. 1949;16:259–66.

    Google Scholar 

  35. Ennis BJ, Tardos G, Pfeffer R. A microlevel-based characterization of granulation phenomena. Powder Technol. 1991;65(1-3):257–72.

    Article  CAS  Google Scholar 

  36. Liu LX, Lister JD, Iveson SM, Ennis BJ. Coalescence of deformable granules in wet granulation processes. AIChE J. 2000;46(3):529–39.

    Article  CAS  Google Scholar 

  37. Iveson SM, Litster JD, Hapgood K, Ennis BJ. Nucleation, growth and breakage phenomena in agitated wet granulation processes; a review. Powder Technol. 2001;117(1-2):3–39.

    Article  CAS  Google Scholar 

  38. Rumpf H. Grundlagen und methoden des granulieren. Chem Ing Tech. 1958;30:144–58.

    Article  CAS  Google Scholar 

  39. Gröger T, Tüzünm U, Heyes DM. Modelling and measuring of cohesion in wet granular materials. Powder Technol. 2003;133(1-3):203–15.

    Article  Google Scholar 

  40. Yang RY, Yu AB, Choi SK, Coates MS, Chan HK. Agglomeration of fine particles subjected to centripetal compaction. Powder Technol. 2008;184(1):122–9.

    Article  CAS  Google Scholar 

  41. Hoblitzell JR, Rhodes CT. Determination of a relationship between force-displacement and force-time compression curves. Drug Dev Ind Pharm. 1990;16(2):201–29.

    Article  CAS  Google Scholar 

  42. Tye CK, Sun C, Amidon GE. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J Pharm Sci. 2005;94(3):465–72.

    Article  CAS  PubMed  Google Scholar 

  43. Klevan I, Nordstrom J, Bauer-Brandl A, Alderborn G. On the physical interpretation of the initial bending of a Shapiro-Konopicky-Heckel compression profile. Eur J Pharm Biopharm. 2009;71(2):395–401.

    Article  CAS  PubMed  Google Scholar 

  44. Klevan I, Nordstrom J, Tho I, Alderborn G. A statistical approach to evaluate the potential use of compression parameters for classification of pharmaceutical powder materials. Eur J Pharm Biopharm. 2010;75(3):425–35.

    Article  CAS  PubMed  Google Scholar 

  45. Nordström J, Klevan I, Alderborn G. A particle rearrangement index based on the kawakita powder compression equation. J Pharm Sci. 2009;98(3):1053–63.

    Article  PubMed  Google Scholar 

  46. Kawakita K, Ludde K-H. Some considerations on powder compression equations. Powder Technol. 1971;4(2):61–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryoichi Furukawa or Yoshiyuki Shirakawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, R., Kadota, K., Noguchi, T. et al. DEM Modelling of Granule Rearrangement and Fracture Behaviours During a Closed-Die Compaction. AAPS PharmSciTech 18, 2368–2377 (2017). https://doi.org/10.1208/s12249-017-0719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0719-z

KEY WORDS

Navigation