Skip to main content
Log in

Nano-reservoir Bioadhesive Tablets Enhance Protein Drug Permeability Across the Small Intestine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Most therapeutic proteins are classified as class III drugs according to the Biopharmaceutical Classification System means that the low permeability across the intestinal epithelium is the rate-limited step for their oral absorption. Cationic chitosan nanoparticles have been found to open the tight junctions between epithelial cells. On the other hand, bioadhesive delivery devices could prolong the gastrointestinal residence time. In the present study, we developed a novel nano-reservoir bioadhesive tablets that combining the advantages of cationic nanoparticles and bioadhesive delivery devices anticipated achieving effective transport of sufficient protein drugs across the intestinal epithelium. The nano-reservoir in bioadhesive tablets was composed of chitosan nanoparticles (CS-NPs) loading a model protein drug bovine serum albumin (BSA). The formula of bioadhesive tablets was optimized by using rotatable central composite design and response surface methodology. The nano-reservoir, BSA-loaded CS-NPs, had an average particle diameter of 312.5 ± 12.89 nm and zeta-potential value of 26.76 ± 3.56 mV. Carboxymethyl chitosan added to the formula significantly ameliorated the tight junction damage of the Caco-2 cell monolayer induced by CS-NPs, meanwhile maintained the high transport efficiency of BSA. Permeability study exhibited that these nano-reservoir bioadhesive tablets combining the advantages of cationic nanoparticles and bioadhesive tablets significantly enhanced BSA transport through rabbit small intestine in comparison with either conventional bioadhesive tablets or CS-NPs. Therefore, these nano-reservoir bioadhesive tablets provided a great potential dosage form design for the oral delivery of protein drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Niu Z, Conejos-Sánchez I, Griffin BT, O’Driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016. doi:10.1016/S0169-409X(16)30100-4.

    PubMed  Google Scholar 

  2. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39. doi:10.1038/nrd2399.

    Article  CAS  PubMed  Google Scholar 

  3. Birch JR, Onakunle Y. Biopharmaceutical proteins: opportunities and challenges. Methods Mol Biol. 2005;308:1–16. doi:10.1385/159259-922-2.

    CAS  PubMed  Google Scholar 

  4. Werle M, Makhlof A, Takeuchi H. Oral protein delivery: a patent review of academic and industrial approaches. Recent Pat Drug Deliv Formul. 2009;3:94–104. doi:10.2174/187221109788452221.

    Article  CAS  PubMed  Google Scholar 

  5. Herrero EP, Alonso MJ, Csaba N. Polymer-based oral peptide nanomedicines. Ther Deliv. 2012;3:657–68. doi:10.4155/tde.12.40.

    Article  CAS  PubMed  Google Scholar 

  6. Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev. 2013;65:822–32. doi:10.1016/j.addr.2012.10.007.

    Article  CAS  PubMed  Google Scholar 

  7. Sonia TA, Sharma CP. Chitosan and its derivatives for drug delivery perspective. Adv Polym Sci. 2011;243:23–54. doi:10.1007/12_2011_117.

    Article  CAS  Google Scholar 

  8. Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, Chung MF, et al. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev. 2013;65:965–79. doi:10.1016/j.addr.2012.10.010.

    Google Scholar 

  9. Schulz JD, Gauthier MA, Leroux JC. Improving oral drug bioavailability with polycations? Eur J Pharm Biopharm. 2015;97:427–37. doi:10.1016/j.ejpb.2015.04.025.

    Article  CAS  PubMed  Google Scholar 

  10. Grenha A. Chitosan nanoparticles: a survey of preparation methods. J Drug Target. 2012;20:291–300. doi:10.3109/1061186X.2011.654121.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: where do we stand? J Control Release. 2012;161:496–504. doi:10.1016/j.jconrel.2012.03.017.

    Article  CAS  PubMed  Google Scholar 

  12. Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo). 2010;58:1423–30. doi:10.1248/cpb.58.1423.

    Article  CAS  Google Scholar 

  13. Zhang J, Zhu X, Jin Y, Shan W, Huang Y. Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles. Mol Pharm. 2014;11:1520–32. doi:10.1021/mp400685v.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Sadi RM, Ma TY. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol. 2007;178:4641–9. doi:10.2353/ajpath.2010.100371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fischer KE, Jayagopal A, Nagaraj G, Daniels RH, Li EM, Silvestrini MT, et al. Nanoengineered surfaces enhance drug loading and adhesion. Nano Lett. 2011;11:1076–81. doi:10.1021/nl103951e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ameye D, Voorspoels J, Foreman P, Tsai J, Richardson P, Geresh S, et al. Ex vivo bioadhesion and in vivo testosterone bioavailability study of different bioadhesive formulations based on starch-g-poly(acrylic acid) copolymers and starch/poly(acrylic acid) mixtures. J Control Release. 2002;79:173–82. doi:10.1016/S0168-3659(01)00539-9.

    Article  CAS  PubMed  Google Scholar 

  17. Sharma S, Mukkur TK, Benson HA, Chen Y. Enhanced immune response against pertussis toxoid by IgA-loaded chitosan–dextran sulfate nanoparticles. J Pharm Sci. 2012;101:233–44. doi:10.1002/jps.22763.

    Article  CAS  PubMed  Google Scholar 

  18. Prasanna RI, Anitha P, Chetty CM. Formulation and evaluation of bucco-adhesive tablets of sumatriptan succinate. Int J Pharm Investig. 2011;1:182–91. doi:10.4103/2230-973X.85971.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Perioli L, Pagano C. Preformulation studies of mucoadhesive tablets for carbamazepine sublingual administration. Colloids Surf B: Biointerfaces. 2013;102:915–22. doi:10.1016/j.colsurfb.2012.10.001.

    Article  CAS  PubMed  Google Scholar 

  20. Gavin A, Pham JT, Wang D, Brownlow B, Elbayoumi TA. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics. Int J Nanomedicine. 2015;10:1569–84. doi:10.2147/IJN.S75474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pendekaln MS, Tegginamat PK. Formulation and evaluation of a bioadhesive patch for buccal delivery of tizanidine. Acta Pharm Sin B. 2012;2:318–24. doi:10.1016/j.apsb.2011.12.012.

    Article  Google Scholar 

  22. Hilgers AR, Conradi RA, Burton PS. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res. 1990;7:902–10. doi:10.1023/A:1015937605100.

    Article  CAS  PubMed  Google Scholar 

  23. van Breemen RB, Li Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin Drug Metab Toxicol. 2005;1:175–85. doi:10.1517/17425255.1.2.175.

    Article  PubMed  Google Scholar 

  24. Chakraborti CK, Sahoo S, Behera PK. Role of different biodegradable polymers on the permeability of ciprofloxacin. J Adv Pharm Technol Res. 2014;5:140–6. doi:10.4103/2231-4040.137434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang X, Chen Y, Dahmani FZ, Yin L, Zhou J, Yao J. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials. 2014;35:7654–65. doi:10.1016/j.biomaterials.2014.05.053.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National High Technology Research and Development Program of China (863 Program) (Project No. 2014AA022205) and Fundamental Research Funds for the Central Universities (No. 09ykpy67) for their financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuifeng Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Wang, Y., Wang, C. et al. Nano-reservoir Bioadhesive Tablets Enhance Protein Drug Permeability Across the Small Intestine. AAPS PharmSciTech 18, 2329–2335 (2017). https://doi.org/10.1208/s12249-016-0709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0709-6

KEY WORDS

Navigation