Skip to main content

Advertisement

Log in

Role of Water Sorption in Tablet Crushing Strength, Disintegration, and Dissolution

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Drugs formulated as tablets are subjected to accelerated stability conditions with the goal of identifying a stable formulation that will exhibit a sufficiently long shelf life. Water sorption at a condition such as 40°C/75% RH can result in significant changes in tablet properties such as a decrease in dissolution rate, the cause of which may be difficult to interpret, given the complex nature of ingredients and their interactions in a tablet. In this research, three drugs, displaying a wide range of physicochemical properties, were formulated with commonly used diluents, disintegrants, and binders, using a design of experiments approach. The tablets were stored at accelerated conditions and assessed for content, dissolution, disintegration, and crushing strength, as well as other properties. The research demonstrated many water-induced effects in tablet properties. Due to the experimental design approach that revealed many interactions, it was possible to interpret all of the changes observed in tablet crushing strength, disintegration, and dissolution for the drugs using a common set of physical principles. Specifically, the relevant factors considered were (1) mechanical properties of materials, (2) water sorption surface effects in surface diffusion and capillary condensation, (3) water sorption bulk effects for amorphous materials such as viscous flow/spreading, and (4) water-induced stress on interparticle bonding arising from volume expansion. These physical principles enable a comprehensive interpretation of the complex changes observed in tablet properties, which should be valuable in the design of tablet formulations that will be stable to accelerated storage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chowhan ZT, Palagyi L. Hardness increase induced by partial moisture loss in compressed tablets and its effect on in vitro dissolution. J Pharm Sci. 1978;67(10):1385–9.

    Article  CAS  PubMed  Google Scholar 

  2. Chowhan ZT. Moisture, hardness, disintegration and dissolution interrelationships in compressed tablets prepared by the wet granulation process. Drug Dev Ind Pharm. 1979;5(1):41–62.

    Article  CAS  Google Scholar 

  3. Chowhan ZT. The effect of low- and high-humidity ageing on the hardness, disintegration time and dissolution rate of dibasic calcium phosphate-based tablets. J Pharm Pharmacol. 1980;32:10–4.

    Article  CAS  PubMed  Google Scholar 

  4. Molokhia AM, Al-Shora HI, Hammad AA. Aging of tablets prepared by direct compression of bases with different moisture content. Drug Dev Ind Pharm. 1987;13(9–11):1933–46.

    Article  CAS  Google Scholar 

  5. Chowhan ZT. Role of binders in moisture-induced hardness increase in compressed tablets and its effect on in vitro disintegration and dissolution. J Pharm Sci. 1980;69(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  6. Sarisuta N, Parrott EL. Effects of temperature, humidity and aging on the disintegration and dissolution of acetaminophen tablets. Drug Dev Ind Pharm. 1988;14(13):1877–81.

    Article  CAS  Google Scholar 

  7. Lausier JM, Chiang C, Zompa HA, Rhodes CT. Aging of tablets made with dibasic calcium phosphate dihydrate as matrix. J Pharm Sci. 1977;66(11):1636–7.

    Article  CAS  PubMed  Google Scholar 

  8. Schepky G, Fischer M. Effect of production-related variations in hardness and moisture content on the sorption characteristics of tablets. Eur J Pharm Biopharm. 1993;39(2):53–60.

    CAS  Google Scholar 

  9. Li S, Wei B, Fleres S, Comfort A, Royce A. Correlation and prediction of moisture-mediated dissolution stability for benazepril hydrochloride tablets. Pharm Res. 2004;21(4):617–24.

    Article  CAS  PubMed  Google Scholar 

  10. Khan KA, Rhodes CT. Water-sorption properties of tablet disintegrants. J Pharm Sci. 1975;64(3):447–51.

    Article  CAS  PubMed  Google Scholar 

  11. Desai PM, Liew CV, Heng PWS. Review of disintegrants and the disintegration phenomena. J Pharm Sci. 2016;105:2545–55.

    Article  CAS  PubMed  Google Scholar 

  12. Bolhuis GK, van Kamp HV, Lerk CF, Sessink FGM. On the mechanism of action of modern disintegrants. Acta Pharm Technol. 1982;28(2):111–4.

    CAS  Google Scholar 

  13. Rudnic EM, Rhodes CT, Welch S, Bernardo P. Evaluations of the mechanism of disintegrant action. Drug Dev Ind Pharm. 1982;8(1):87–109.

    Article  CAS  Google Scholar 

  14. Quadir A, Kolter K. A comparative study of current superdisintegrants. Pharm Technol. 2006;2006(5):1–5.

    Google Scholar 

  15. Thibert R, Hancock BC. Direct visualization of superdisintegrant hydration using environmental scanning electron microscopy. J Pharm Sci. 1996;85(11):1255–8.

    Article  CAS  PubMed  Google Scholar 

  16. Colombo P, Conte U, Caramella C, Geddo M, Manna A. Disintegrating force as a new formulation parameter. J Pharm Sci. 1984;73(5):701–5.

    Article  CAS  PubMed  Google Scholar 

  17. Hersen-Delesalle C, Leclerc B, Couarraze G, Busignies V, Tcheoreloff P. The effects of relative humidity and super-disintegrant concentrations on the mechanical properties of pharmaceutical compacts. Drug Dev Ind Pharm. 2007;33:1297–307.

    Article  CAS  PubMed  Google Scholar 

  18. Gordon MS, Chowhan ZT. Effect of tablet solubility and hygroscopicity on disintegration efficiency in direct compression tablets in terms of dissolution. J Pharm Sci. 1987;76(12):907–9.

    Article  CAS  PubMed  Google Scholar 

  19. Johnson JR, Wang L, Gordon MS, Chowhan ZT. Effect of formulation solubility and hygroscopicity on disintegrant efficiency in tablets prepared by wet granulation, in terms of dissolution. J Pharm Sci. 1991;80(5):469–71.

    Article  CAS  PubMed  Google Scholar 

  20. Nyqvist H, Nicklasson M, Lundgren P. Studies on the physical properties of tablets and tablet excipients. Acta Pharm Suec. 1981;18:305–14.

    CAS  PubMed  Google Scholar 

  21. Kadir S, Yata N, Kawata M, Goto S. Effect of humidity aging on disintegration, dissolution and cumulative urinary excretion of Ca p-aminosalicylate formulations. Chem Pharm Bull. 1986;34(12):5102–9.

    CAS  PubMed  Google Scholar 

  22. Vila-Jato JL, Concheiro A, Seijo B. Effect of aging on the bioavailability of nitrofurantoin tablets containing Carbopol 934. Drug Dev Ind Pharm. 1987;13(8):1315–27.

    Article  CAS  Google Scholar 

  23. Wafik Gouda M, Moustafa MA, Molokhia AM. Effect of storage conditions on erythromycin tablets marketed in Saudi Arabia. Int J Pharm. 1980;5:345–7.

    Article  Google Scholar 

  24. Wang JT, Shiu GK, Ong-Chen T, Viswanathan CT, Skelly JP. Effects of humidity and temperature on in vitro dissolution of carbamazepine tablets. J Pharm Sci. 1993;83(10):1002–5.

    Article  Google Scholar 

  25. Yalkowski SH, He Y, Jain P. Handbook of aqueous solubility data second edition. New York: CRC Press; 2010. p. 492.

    Book  Google Scholar 

  26. Delgado DR, Ruidiaz MA, Gómez SM, Gantiva M, Martínez F. Thermodynamic study of the solubility of sodium naproxen in some ethanol + water mixtures. Quim Nova. 2010;33(9):1923–7.

    Article  CAS  Google Scholar 

  27. Yalkowski SH, He Y, Jain P. Handbook of aqueous solubility data second edition. New York: CRC Press; 2010. p. 1129.

    Book  Google Scholar 

  28. Liu L, Levin M, Sheskey P. Process development and scale-up of wet granulation by the high shear process. In: Qiu Y, Chen Y, Zhang GGZ, Liu L, Porter WR, editors. Developing solid oral dosage forms: pharmaceutical theory and practice. New York: Academic; 2009. p. 667–99.

    Chapter  Google Scholar 

  29. Raijada D, Bond AD, Larsen FH, Cornett C, Qu H, Rantanen J. Exploring the solid-form landscape of pharmaceutical hydrates: transformation pathways of the sodium naproxen anhydrate-hydrate system. Pharm Res. 2013;30:280–9.

    Article  CAS  PubMed  Google Scholar 

  30. Kiekens F, Zelko R, Remon JP. Effect of the storage conditions on the tensile strength of tablets in relation to the enthalpy relaxation of the binder. Pharm Res. 2000;17(4):490–3.

    Article  CAS  PubMed  Google Scholar 

  31. Fitzpatrick S, McCabe JF, Petts CR, Booth SW. Effect of moisture on polyvinylpyrrolidone in accelerated stability testing. Int J Pharm. 2002;246:143–51.

    Article  CAS  PubMed  Google Scholar 

  32. Patel S, Kaushal AM, Bansal AK. Mechanistic investigation on pressure dependence of Heckel parameter. Int J Pharm. 2010;389:66–73.

    Article  CAS  PubMed  Google Scholar 

  33. Stubberud L, Arwidsson HG, Hjortsberg V, Graffner C. Water-solid interactions. III. Effect of glass transition temperature, Tg, and processing on tensile strength on compacts of lactose and lactose/polyvinyl pyrrolidone. Pharm Dev Technol. 1996;1(2):195–204.

    Article  CAS  PubMed  Google Scholar 

  34. Caramella C, Colombo P, Conte U, Ferrari F, La Manna A. Water uptake and disintegrating force measurements: towards a general understanding of disintegration mechanisms. Drug Dev Ind Pharm. 1986;12(11–13):1749–66.

    Article  CAS  Google Scholar 

  35. Desai PM, Liew CV, Heng PWS. Understanding disintegrant action by visualization. J Pharm Sci. 2012;101(6):2155–64.

    Article  CAS  PubMed  Google Scholar 

  36. Quodbach J, Moussavi A, Tammer R, Frahm J, Kleinebudde P. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging. J Pharm Sci. 2014;103:249–55.

    Article  CAS  PubMed  Google Scholar 

  37. Malaj L, Censi R, Gashi Z, Di Martino P. Compression behavior of anhydrous and hydrate forms of sodium naproxen. Int J Pharm. 2010;390:142–9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu L, Brian CW, Swallen SF, Straus PT, Ediger MD, Yu L. Surface self-diffusion of an organic glass. Phys Rev Lett. 2011;106:256103-1–4.

    Google Scholar 

  39. Brian CW, Yu L. Surface self-diffusion of organic glasses. J Phys Chem A. 2013;117:13303–9.

    Article  CAS  PubMed  Google Scholar 

  40. Cassidy AMC, Gardner CE, Jones W. Following the surface response of caffeine cocrystals to controlled humidity storage by atomic force microscopy. Int J Pharm. 2009;379:59–66.

    Article  CAS  PubMed  Google Scholar 

  41. Whittemore OJ, Varela JA. Initial sintering of MgO in several water vapor pressures. Adv Ceram. 1984;10:583–91.

    CAS  Google Scholar 

  42. Vargaftik NB, Volkov BN, Voljak LD. International tables of surface tension of water. J Phys Chem Ref Data. 1983;12(3):817–20.

    Article  CAS  Google Scholar 

  43. Hunter RJ. Foundations of colloid science. New York: Oxford; 1989. p. 277–8.

    Google Scholar 

  44. Alberty RA. Physical chemistry. New York: Wiley; 1987. p. 192–3.

    Google Scholar 

Download references

Acknowledgements

R. Teerakapibal was supported by the George D. Zografi Educational Advancement Fund in Pharmaceutical Research. The authors acknowledge a review and comments from Prof. George Zografi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sacchetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetti, M., Teerakapibal, R., Kim, K. et al. Role of Water Sorption in Tablet Crushing Strength, Disintegration, and Dissolution. AAPS PharmSciTech 18, 2214–2226 (2017). https://doi.org/10.1208/s12249-016-0699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0699-4

KEY WORDS

Navigation