Skip to main content

Advertisement

Log in

Effect of Liquid Crystalline Systems Containing Antimicrobial Compounds on Infectious Skin Bacteria

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study aimed (i) to prepare liquid crystalline systems (LCS) of glyceryl monooleate (GMO) and water containing antibacterial compounds and (ii) to evaluate their potential as drug delivery systems for topical treatment of bacterial infections. Therefore, LCS containing CPC (cetylpyridinium chloride) (LCS/CPC) and PHMB (poly(hexamethylene biguanide) hydrochloride) (LCS/PHMB) were prepared and the liquid crystalline phases were identified by polarizing light microscopy 24 h and 7 days after preparation. The in vitro drug release profile and in vitro antibacterial activity of the systems were assessed using the double layer agar diffusion method against Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Escherichia coli, and Enterococcus faecalis. The interaction between GMO and the drugs was evaluated by a drug absorption study. Stable liquid crystalline systems containing CPC and PHMB were obtained. LCS/PHMB decreased the PHMB release rate and exerted strong antibacterial activity against all the investigated bacteria. In contrast, CPC interacted with GMO so strongly that it became attached to the system; the amount released was not sufficient to exert antibacterial activity. Therefore, the studied liquid crystalline systems were suitable to deliver PHMB, but not CPC. Accordingly, it was demonstrated that GMO interacts with each drug differently, which may interfere in the final efficiency of GMO/water LCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanchez DA, Nosanchuk JD, Friedman AJ. The skin microbiome: is there a role in the pathogenesis of atopic dermatitis and psoriasis? J Drugs Dermatol. 2015;14(2):127–30.

    PubMed  Google Scholar 

  2. Weyrich LS, Dixit S, Farrer AG, Cooper AJ, Cooper AJ. The skin microbiome: associations between altered microbial communities and disease. Australas J Dermatol. 2015;56(4):268–74. doi:10.1111/ajd.12253.

    Article  PubMed  Google Scholar 

  3. Ulmer M, Patzelt A, Vergou T, Richter H, Müller G, et al. In vivo investigation of the efficiency of a nanoparticle-emulsion containing polihexanide on the human skin. Eur J Pharm Biopharm. 2013;84:325–9.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman M, Harrari D, Rimer A, Stabholz A. Inhibition of plaque formation by a sustained release delivery system for cetylpyridinium chloride. Int J Pharm. 1988;44:243–7.

    Article  CAS  Google Scholar 

  5. Norling T, Lading P, Engstron S, Larsson K, Krog N, et al. Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of periodontal disease. J Clin Periodontol. 1992;19:687–92.

    Article  CAS  PubMed  Google Scholar 

  6. Farkas E, Kiss D, Zelkó R. Study on the release of chlorhexidine base and salts from different liquid crystalline structures. Int J Pharm. 2007;340:71–5.

    Article  CAS  PubMed  Google Scholar 

  7. Muller G, Koburger T, Kramer A. Interaction of polyhexamethylene biguanide hydrochloride (PHMB) with phosphatidylcholine containing o/w emulsion and consequences for microbial efficacy and cytotoxicity. Chem Biol Interact. 2013;201:58–64.

    Article  PubMed  Google Scholar 

  8. Finger S, Wiegand C, Buschmann HJ, Hipler UC. Antibacterial properties of cyclodextrin–antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int J Pharm. 2013;452:188–93.

    Article  CAS  PubMed  Google Scholar 

  9. Tyle P. Liquid crystal and their application in drug delivery. In: Rosoff M, editor. Controlled release of drug: polymers and aggregate systems. New York: Morton Rosoff UHC Publishers; 1989. p. 125–62.

    Google Scholar 

  10. Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15:1032–40.

    Article  CAS  PubMed  Google Scholar 

  11. Phan S, Fong WK, Kirby N, Hanley T, Boyd BJ. Evaluation the link between self-assembled mesophase structure and drug release. Int J Pharm. 2011;421:176–82.

    Article  CAS  PubMed  Google Scholar 

  12. Shah JC, Sadhala Y, Chilukuri DM. Cubic phase as drug delivery systems. Adv Drug Del Rev. 2001;47:229–50.

    Article  CAS  Google Scholar 

  13. Boyd BJ, Whittaker DV, Khoo S, Davey G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm. 2006;309:218–26.

    Article  CAS  PubMed  Google Scholar 

  14. Rizwan SB, Hanley T, Boyd BJ, Rades T, Hook S. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterisation, swelling and release kinetics. J Pharm Sci. 2009;98:4191–204.

    Article  CAS  PubMed  Google Scholar 

  15. Freag MS, Elnaggar YSR, Abdelmonsif DA, Abdallah OY. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies. Int J Nanomedicine. 2016;2016(11):4799–818.

    Article  Google Scholar 

  16. Depieri LV, Borgheti-Cardoso LN, Campos PM, Otaguiri KK, Vicentini FTMC, Lopes LB, et al. RNAi mediated IL-6 in vitro knockdown in psoriasis skin model with topical siRNA delivery system based on liquid crystalline phase. Eur J Pharma Biopharm. 2016;105:50–8.

    Article  CAS  Google Scholar 

  17. Fonseca-Santos B, dos Santos AM, Rodero CF, Gremião MPD, Chorilli M. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery. Int J Nanomedicine. 2016;2016(11):4553–62.

    Article  Google Scholar 

  18. Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R. Extending the TIME concept: what have we learned in the past 10 years? Int Wound J. 2012;9(2):1–19. doi:10.1111/j.1742-481X.2012.01097.x.

    Article  PubMed  Google Scholar 

  19. Souza C, Watanabe E, Borgheti-Cardoso LN, Fantini MCA, Lara MG. Mucoadhesive system formed by liquid crystals for buccal administration of poly(hexamethylene biguanide) hydrochloride. J Pharm Sci. 2014;103:3914–23.

    Article  CAS  PubMed  Google Scholar 

  20. Yang SC, Aljuffali IA, Sung CT, Lin CF, Fang JY. Antimicrobial activity of topically-applied soyaethyl morpholinium ethosulfate micelles against Staphylococcus species. Nanomedicine (London). 2016;11(6):657–71. doi:10.2217/nnm.15.217.

    Article  CAS  Google Scholar 

  21. Milak S, Zimmer A. Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int J Pharm. 2015;478:569–87.

    Article  CAS  PubMed  Google Scholar 

  22. Sallam A-S, Hamudi FF, Khalil EA. Effect of ethylcellulose and propylene glycol on the controlled-release performance of glyceryl monooleate-mertronidazole periodontal gel. Pharm Dev Technol. 2015;20(2):159–68. doi:10.3109/10837450.2013.852573.

    Article  CAS  PubMed  Google Scholar 

  23. Esposito E, Carotta V, Scabbia A, Trombelli L, D’Antona P, Menegatti E, et al. Comparative analysis of tetracycline-containing dental gels: poloxamer- and monoglyceride-based formulations. Int J Pharm. 1996;142(1):9–23. doi:10.1016/0378-5173(96)04649-2.

    Article  CAS  Google Scholar 

  24. Boge L, Bysell H, Ringstad L, Wennman D, Umerska A, et al. Lipid-based liquid crystals as carriers for antimicrobial peptides: phase behavior and antimicrobial effect. Langmuir. 2016;32(17):4217–28. doi:10.1021/acs.langmuir.6b00338.

    Article  CAS  PubMed  Google Scholar 

  25. Engstrom S, Larsson K, Lindman B. Liquid crystalline phases as delivery systems for drugs: I. Basic principles. Control Release Bioac Mater. 1988;105.

  26. Rosevear FB. The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J Am Chem Soc. 1954;31:628–39.

    CAS  Google Scholar 

  27. Victorino FR, Bramante CM, Watanabe E, Ito IT, Franco SL, et al. Antibacterial activity of propolis-based toothpastes for endodontic treatment. Braz J Pharm Sci. 2009;45:795–800.

    Article  CAS  Google Scholar 

  28. Pires de Souza FC, Moraes PC, Garcia LF, Aguilar FG, Watanabe E. Evaluation of pH, calcium ion release and antimicrobial activity of a new calcium aluminate cement. Braz Oral Res. 2013;27:324–30.

    Article  Google Scholar 

  29. Higuchi WI. Analysis of data on the medicament release from ointments. J Pharm Sci. 1962;51:802–4.

    Article  CAS  PubMed  Google Scholar 

  30. Gelfuso GM, Gratieri T, Simão PS, Freitas LAP, Lopez RFV. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate. J Microencapsul. 2011;28(7):650–8.

    Article  CAS  PubMed  Google Scholar 

  31. Chang CM, Bodmeier R. Binding of drugs to monoglyceride-based drug delivery systems. Int J Pharm. 1997;147:135–42.

    Article  CAS  Google Scholar 

  32. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53. Erratum in: Nat Rev Microbiol. 2011;9(8):626. doi:10.1038/nrmicro2537.

  33. Owens CD, Stoessel K. Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect. 2008;70(2):3–10. doi:10.1016/S0195-6701(08)60017-1.

    Article  PubMed  Google Scholar 

  34. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99:703–15.

    Article  CAS  PubMed  Google Scholar 

  35. Patel R, Patel TN. Liquid crystals and their application in the field of drug delivery. In: Fanun M, editor. Colloid in drug delivery, vol. 150. USA: CRC Press; 2010. p. 311–36.

    Chapter  Google Scholar 

  36. Chang CM, Bodmeier R. Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase. Int J Pharm. 1998;173:51–60.

    Article  CAS  Google Scholar 

  37. Geraghty PB, Attwood D, Collett JH, Dandiker Y. The in vitro release of some muscarinic drugs from monoolein/water lyotropic crystalline gels. Pharm Res. 1996;13:1265–71.

    Article  CAS  PubMed  Google Scholar 

  38. Myhrman E, Hakansson J, Lindgren K, Bjorn C, Sjostrand V, et al. The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections. Appl Microbiol Biotechnol. 2013;97:3085–96.

    Article  CAS  PubMed  Google Scholar 

  39. Estrela C, Silva JA, de Alencar AH, Leles CR, Decurcio DA. Efficacy of sodium hypochlorite and chlorhexidine against Enterococcus faecalis—a systematic review. J Appl Oral Sci. 2008;16:364–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guerreiro-Tanomaru JM, Chávez-Andrade GM, de Faria-Júnior NB, Watanabe E, Tanomaru-Filho M. Effect of passive ultrasonic irrigation on Enterococcus faecalis from root canals: an ex vivo study. Braz Dent J. 2015;26:342–6.

    Article  PubMed  Google Scholar 

  41. De Paula GF, Netto GI, Mattoso LHC. Physical and chemical characterization of poly(hexamethylene biguanide) hydrochloride. Polymers. 2011;3:928–41.

    Article  Google Scholar 

  42. Wessels S, Ingmer H. Modes of action of three disinfectant active substances: a review. Regul Toxicol Pharmacol. 2013;67:456–67.

    Article  CAS  PubMed  Google Scholar 

  43. Lee J, Kellaway IW. In vitro peptide release from liquid crystalline buccal delivery systems. Int J Pharm. 2000;195:29–33.

    Article  CAS  PubMed  Google Scholar 

  44. Burrows R, Collett JH, Attwood D. The release of drugs from monoglyceride-water liquid crystalline phases. Int J Pharm. 1994;111:283–93.

    Article  CAS  Google Scholar 

  45. Sallam A, Khalil E, Ibrahim H, Freij I. Formulation of an oral dosage form utilizing the properties of cubic liquid crystalline phases of glyceryl monooleate. Eur J Pharm Biopharm. 2002;53:343–52.

    Article  CAS  PubMed  Google Scholar 

  46. Estracanholli EA, Praça FG, Cintra AB, Pierre MBR, Lara MG. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies. AAPS PharmSciTech. 2014;15(6):1468–75. doi:10.1208/s12249-014-0171-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang CM, Bodmeier R. Swelling of and drug release from monoglyceride-based drug delivery systems. J Pharm Sci. 1997;86:747–52.

    Article  CAS  PubMed  Google Scholar 

  48. Chang CM, Bodmeier R. Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J Control Release. 1997;46:215–22.

    Article  CAS  Google Scholar 

  49. Ganem-Quintanar A, Quintanar-Guerreiro D, Buri P. Monoolein: a review of the pharmaceutical applications. Drug Dev Ind Pharm. 2000;26:809–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) and the National Council for Scientific and Technological Development (CNPq, Brazil) for their financial support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilisa Guimarães Lara.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, C., Watanabe, E., Aires, C.P. et al. Effect of Liquid Crystalline Systems Containing Antimicrobial Compounds on Infectious Skin Bacteria. AAPS PharmSciTech 18, 2110–2119 (2017). https://doi.org/10.1208/s12249-016-0690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0690-0

KEY WORDS

Navigation