Naproxen Microparticulate Systems Prepared Using In Situ Crystallisation and Freeze-Drying Techniques

Abstract

Poor drug solubility and dissolution rate remain to be one of the major problems facing pharmaceutical scientists, with approximately 40% of drugs in the industry categorised as practically insoluble or poorly water soluble. This in turn can lead to serious delivery challenges and poor bioavailability. The aim of this research was to investigate the effects of the surfactants, poloxamer 407 (P407) and caprol® PGE 860 (CAP), at various concentrations (0.1, 0.5, 1 and 3% w/v) on the enhancement of the dissolution properties of poorly water-soluble drug, naproxen, using in situ micronisation by solvent change method and freeze-drying. The extent at which freeze-drying influences the dissolution rate of naproxen microcrystals is investigated in this study by comparison with desiccant-drying. All formulations were evaluated and characterised using particle size analysis and morphology, in vitro dissolution studies, differential scanning calorimetry (DSC), and Fourier transform infra-red (FT-IR) spectroscopy. An increase in poloxamer 407 concentration in freeze-dried formulations led to enhancement of drug dissolution compared to desiccator-dried formulations, naproxen/caprol® PGE 860 formulations and untreated drug. DSC and FT-IR results show no significant chemical interactions between drug and poloxamer 407, with only very small changes to drug crystallinity. On the other hand, caprol® PGE 860 showed some interactions with drug components, alterations to the crystal lattice of naproxen, and poor dissolution profiles using both drying methods, making it a poor choice of excipient.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Rasenack N, Hartenhauer H, Müller BW. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int J Pharm. 2003;254:137–45.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Karkan M, Li L, Muller RH. Overcoming the challenges of poor drug solubility. Pharm Eng. 2012;32:1–7.

    Google Scholar 

  3. 3.

    Kshirsagar AD, Shikare ON, Shaikh HM. Bioavailability and bioequivalence study in correlation of biopharmaceutics classification system (BCS) and possible modification. J Pharm Sci Innov. 2013;2:10–6.

    Article  Google Scholar 

  4. 4.

    Ku MS, Dulin W. A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-In-Human to clinical Proof-Of-Concept. Pharm Dev Tech. 2012;17:285–302.

    CAS  Article  Google Scholar 

  5. 5.

    Varshosaz J, Khajavinia A, Ghasemlu M, Ataei E, Golshiri K, Khayam I. Enhancement in dissolution rate of piroxicam by two micronization techniques. Dissolution Tech. 2013; 15–23.

  6. 6.

    Bindu MB, Kusum B, David B. Novel strategies for poorly water soluble drugs. Int J Pharm Sci Rev Res. 2010;4:76–84.

    CAS  Google Scholar 

  7. 7.

    Javaheri H, Carter P, Elkordy AA. Wet granulation to overcome liquisolid technique issues of poor flowability and compactibility: a study to enhance Glibenclamide dissolution. J Pharm Drug Devel. 2014;1(5):501–12.

    Google Scholar 

  8. 8.

    Suliman AS, Anderson R, Elkordy AA. Norfloxacin as a model hydrophobic drug with unique release from liquisolid formulations prepared with PEG200 and Synperonic PE/L-61 non-volatile liquid vehicles. Powder Technol. 2014;257:156–67.

    CAS  Article  Google Scholar 

  9. 9.

    Nokhodchi A, Javadzadeh Y, Siahi-Shadbad MR, Barzegar-Jalali M. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. J Pharm Pharm Sci. 2005;8(1):18–25.

    CAS  PubMed  Google Scholar 

  10. 10.

    Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9:304–16.

    Article  Google Scholar 

  11. 11.

    Lonare AA, Patel SR. Antisolvent crystallization of poorly water soluble drugs. Int J Chem Eng Appl. 2013;4:337–41.

    CAS  Google Scholar 

  12. 12.

    Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2007;341:26–34.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Keraliyaa RA, Sonic TG, Thakkarb VT, Gandhib TR. Dissolution rate enhancement of tolbutamide by in-situ-micronization using sodium lauryl sulphate. Ph Tech Med. 2013;2:2278–1099.

    Google Scholar 

  14. 14.

    Joshi JT. A review on micronization techniques. J Pharm Sci Technol. 2011;3:651–81.

    CAS  Google Scholar 

  15. 15.

    Vandana KR, Raju PY, Chowdary H, Sushma M. An overview on in situ micronisation technique—an emerging novel concept in advanced drug delivery. Saudi Pharm J. 2014;22:283–9.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420:1–10.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kim ST, Kwon JH, Lee JJ, Kim CW. Microcrystallization of indomethacin using a pH-shift method. Int J Pharm. 2003;263:141–50.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Talari R, Varshosaz J, Mostafavi SA, Nokhodchi A. Dissolution enhancement of gliclazide using pH change approach in presence of twelve stabilizers with various physico-chemical properties. J Pharm Pharmaceut Sci. 2009;12:250–65.

    CAS  Article  Google Scholar 

  19. 19.

    Varshosaz J, Talari R, Mostafav SA, Nokhodch A. Dissolution enhancement of gliclazide using in situ micronization by solvent change method. Powder Tech. 2008;187:222–30.

    CAS  Article  Google Scholar 

  20. 20.

    Kaneniwa N, Ikekawa A. Influence of ball-milling atmosphere on decrease of molecular weight of polyvinylpyrrolidone powders. Chem Pharm Bull. 1972;20:536–1543.

    Article  Google Scholar 

  21. 21.

    Gupta AK, Sehrawat SK. Bioavailability enhancement of poorly water soluble drugs: a review. Int J Pharm Life Sci. 2011;2:640–50.

    CAS  Google Scholar 

  22. 22.

    Rasenack N, Muller BW. Dissolution rate enhancement by in situ micronisation of poorly warter-soluble drugs. Pharm Res. 2002;19:1894–900.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Elkordy AA, Jatto A, Essa E. In situ controlled crystallization as a tool to improve the dissolution of Glibenclamide. Int J Pharm. 2012;428(1):118–20.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Patel T, Patel LD, Patel T, Makwana S, Patel T. Enhancement of dissolution of fenofibrate by solid dispersion technique. Int J Res Pharm Sci. 2010;1:127–32.

    Google Scholar 

  25. 25.

    Badr-Eldin SM, Ahmed TA, Ismail HR. Aripiprazole-Cyclodextrin binary systems for dissolution enhancement: effect of preparation technique, cyclodextrin type and molar ratio. Iran J Basic Med Sci. 2013;16:1223–31.

    CAS  Google Scholar 

  26. 26.

    Xu WJ, Xie HJ, Cao QR, Shi LL, Cao Y, Zhu XY, et al. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers. Drug Deliv. 2016;23:41–8.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Rasenack N, Müller BW, Steckel H. Preparation of microcrystals by in situ micronisation. Powd Tech. 2004;143–144:291–6.

    Article  Google Scholar 

  28. 28.

    Franks F. Freeze-drying of bioproducts: putting principles into practice. Eur J Pharma Biopharma. 1998;45:221–9.

    CAS  Article  Google Scholar 

  29. 29.

    Baghel S, Cathecart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016; 1–18

  30. 30.

    Parrott EL, Sharma VK. Dissolution kinetics of benzoic acid in high concentrations of surface active agents. J Pharm Sci; 56: 1341–3.

  31. 31.

    Bogardus JB. Crystalline anhydrous-hydrate phase changes of caffeine and theophylline in solvent water-mixtures. J Pharm Sci. 1983;72:837–8.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Akinlade B, Elkordy AA, Essa EA, Elhagar S. Liquisolid systems to improve the dissolution of furosemide. Sci Pharm. 2010;78:325–44.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Steckel H, Rasenack N, Muller BW. In-situ micronisation of disodium cromoglyacate for pulmonary delivery. Eur J Pharm Biopharm. 2003;55:173–80.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    British Pharmacopoeia. 2016. London, UK: British Pharmacopoeia commission office.

  35. 35.

    Dixit M, Kulkarni PK, Charyulu RN. Enhancing solubility and dissolution of naproxen by spray drying technique. World J Pharm Pharma Sci. 2015;4:715–25.

    CAS  Google Scholar 

  36. 36.

    Akbari J, Saeedi M, Morteza-Semnani K, Rostamkataei SS, Asadi M, Asare-Addo K, et al. The design of naproxen solid lipid nanoparticles to target skin layers. Colloids Surf B: Biointerfaces. 2016;145:626–33.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Elkordy AA, Ashoore A, Essa EA. Complexation of naproxen with beta-cyclodextrin with and without poloxamer 407 to enhance drug dissolution. J App Pharm. 2012;3:614–27.

    Google Scholar 

  38. 38.

    Rhee YS, Shin YH, Park CW, Chi SC, Park ES. Effect of flavors on the viscosity and gelling point of aqueous poloxamer solution. Arch Pharm Res. 2006;29:1171–8.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Mura P, Zerrouk N, Mennini N, Maestrelli F, Chemtob C. Development and characterization of naproxen–chitosan solid systems with improved drug dissolution properties. Eur J Pharm Sci. 2003;19:67–75.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Dixit M, Kulkarni PK, Naga VK, Devabhaktuni L, Getayla A. Enhancing solubility and dissolution of indomethacin by freeze drying. Int Res J Pharm. 2011;2:69–74.

    CAS  Google Scholar 

  41. 41.

    Mura P, Faucci MT, Bettinetti GP. The influence of polyvinylpyrolidone on naproxen complexation with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci. 2001;13:187–94.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Mura P, Bettinetti GP, Cirri M, Maestrelli F, Sorrenti M, Catenacci. Solid state characterization and dissolution properties of naproxen–arginine–hydroxypropyl–β-cyclodextrin ternary system. Eur J Pharm Biopharm. 2005;59:99–106.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Maghsoodi M, Esmaeilzadeh S. Drug release studies of naproxen agglomerates produced by the antisolvent approach in the presence of hydroxypropyl cellulose. Iran J Pharm Sci. 2011;7:221–9.

    CAS  Google Scholar 

  44. 44.

    Paudel A. Formulation and process considerations in manufacturing spray-dried amorphous solid dispersions: a case study with naproxen-polyvinylpyrrolidone. PhD. thesis, University of Leuven; 2013.

  45. 45.

    Paroha S, Dubey RD, Mallick S. Physicochemical interaction of naproxen with aluminium hydroxide and its effect on dissolution. Farmacia. 2013;61:103–15.

    CAS  Google Scholar 

  46. 46.

    Islam MT, Rodríguez-Hornedo N, Ciotti S, Ackermann C. Fourier transform infrared spectroscopy for the analysis of neutralizer carbomer and surfactant-carbomer interactions in aqueous, hydro alcoholic, and anhydrous gel formulations. AAPSJ. 2004;6:1–7.

    Google Scholar 

  47. 47.

    Ramirez MS. Enhancement of the rate of solution of relatively insoluble drugs from solid-solid systems prepared by supercritical fluid technology. Ph.D. thesis, School of the Ohio State University; 2007.

  48. 48.

    Singh A, Mooter GV. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016;100:27–50.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Anderson RJ, Bendell DJ, Groundwater PW. Organic spectroscopic analysis. The Royal Society of Chemistry, Cambridge; 2004, Pp 24-50.

  50. 50.

    Saritha A, Shastri N. Preparation, physico chemical characterization of solid dispersions of tenoxicam with poloxamer. J Pharm Sci Technol. 2010;2:308–11.

    CAS  Google Scholar 

  51. 51.

    Albuquerque MLS, Alcantara Jr P, Guedes I, Moreira SGC. Infrared absorption spectra of Buriti (Mauritia flexuosa L.) oil. Vib Spectrosc. 2003;33:127–31.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amal Ali Elkordy.

Additional information

Guest Editors: Dr. Z Ahmad and Prof. M Edirisinghe

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solaiman, A., Tatari, A.K. & Elkordy, A.A. Naproxen Microparticulate Systems Prepared Using In Situ Crystallisation and Freeze-Drying Techniques. AAPS PharmSciTech 18, 1438–1446 (2017). https://doi.org/10.1208/s12249-016-0682-0

Download citation

KEY WORDS

  • caprol® PGE 860
  • dissolution enhancement
  • freeze-drying
  • in situ micronisation
  • naproxen
  • poloxamer 407