AAPS PharmSciTech

, Volume 18, Issue 6, pp 2045–2054 | Cite as

PAT-Based Control of Fluid Bed Coating Process Using NIR Spectroscopy to Monitor the Cellulose Coating on Pharmaceutical Pellets

  • Venkata Ramana NaiduEmail author
  • Rucha S. Deshpande
  • Moinuddin R. Syed
  • Piyush Deoghare
  • Dharamvir Singh
  • Pravin S. Wakte
Research Article


Current endeavor was aimed towards monitoring percent weight build-up during functional coating process on drug-layered pellets. Near-infrared (NIR) spectroscopy is an emerging process analytical technology (PAT) tool which was employed here within quality by design (QbD) framework. Samples were withdrawn after spraying every 15-Kg cellulosic coating material during Wurster coating process of drug-loaded pellets. NIR spectra of these samples were acquired using cup spinner assembly of Thermoscientific Antaris II, followed by multivariate analysis using partial least squares (PLS) calibration model. PLS model was built by selecting various absorption regions of NIR spectra for Ethyl cellulose, drug and correlating the absorption values with actual percent weight build up determined by HPLC. The spectral regions of 8971.04 to 8250.77 cm−1, 7515.24 to 7108.33 cm−1, and 5257.00 to 5098.87 cm−1 were found to be specific to cellulose, where as the spectral region of 6004.45 to 5844.14 cm−1was found to be specific to drug. The final model gave superb correlation co-efficient value of 0.9994 for calibration and 0.9984 for validation with low root mean square of error (RMSE) values of 0.147 for calibration and 0.371 for validation using 6 factors. The developed correlation between the NIR spectra and cellulose content is useful in precise at-line prediction of functional coat value and can be used for monitoring the Wurster coating process.


multi-variate model NIR spectroscopy partial least square regression model process analytical technology wurster coating 


  1. 1.
    Jones D. Development, optimization, and scale-up of process parameters: wurster coating. In: Qiu Y, Chen Y, Zhang G, Liu L, Porter W, editors. Developing solid oral dosage forms [Internet]. First edit. Elsevier Inc.; 2009. 798–816.Google Scholar
  2. 2.
    Wurster DE. Landmark article: air-suspension technique of coating drug particles. J Am Pharm Assoc. 2012;52(5):707–10.CrossRefGoogle Scholar
  3. 3.
    De Souza LFG, Nitz M, Taranto OP. Film coating of nifedipine extended release pellets in a fluid bed coater with a wurster insert. Biomed Res Int Hindawi PublCorp. 2014;2014:1–11.Google Scholar
  4. 4.
    Bhattacharjya S, Wurster DE. Investigation of the drug release and surface morphological properties of film-coated pellets, and physical, thermal and mechanical properties of free films as a function of various curing conditions. AAPS PharmSciTech. 2008;9(2):449–57.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Iida K, Todo H, Okamoto H, Danjo K, Leuenberger H. Preparation of dry powder inhalation with lactose carrier particles surface-coated using a Wurster fluidized bed. Chem Pharm Bull (Tokyo). 2005;53(4):431–4.CrossRefGoogle Scholar
  6. 6.
    Chan LW, Tang ESK, Heng PWS. Comparative study of the fluid dynamics of bottom spray fluid bed coaters. AAPS PharmSciTech. 2006;7(2):E37.CrossRefPubMedGoogle Scholar
  7. 7.
    Ozturk AG, Ozturk SS, Palsson BO, Wheatley TA, Dressman JB. Mechanism of release from pellets coated with an ethylcellulose-based film. J Control Release. 1990;14(3):203–13.CrossRefGoogle Scholar
  8. 8.
    FDA. Quality by design for ANDAs: an example for modified release dosage forms. 2011. p. 1–161. Available from: Accessed 23 May 2016.
  9. 9.
    ICH/USFDA. Pharmaceutical Quality System Q10. 2009.…/Guidances/ucm073517.pdf Accessed 23 May 2016.
  10. 10.
    ICH Expert Working Group. Pharmaceutical Development Q8. Vol. 8. 2009. p. 1–28. Accessed 23 May 2016.
  11. 11.
  12. 12.
    FDA. Pharmaceutical CGMPs for the 21s Century - A risk-based approach. 2004. Accessed 23 May 2016.
  13. 13.
    FDA. Guidance for industry PAT — a framework for innovative pharmaceutical development, manufacuring, and quality assurance. 2004 [cited 2016 May 23]. p.16.
  14. 14.
    Simon LL, Pataki H, Marosi G, Meemken F, Hungerbu K, Baiker A, et al. Assessment of recent Process Analytical Technology (PAT) trends: a multiauthor review. Orig Process Res Dev. 2014;19:3–62.CrossRefGoogle Scholar
  15. 15.
    Avalle P, Pollitt MJ, Bradley K, Cooper B, Pearce G, Djemai A, et al. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating. Eur J Pharm Biopharm. 2014;87(2):244–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Menezes JC, Ferreira AP, Rodrigues LO, Brás LP, Alves TP. Chemometrics role within the PAT context: examples from primary pharmaceutical manufacturing. Compr Chemom. 2010;4:313–55.Google Scholar
  17. 17.
    Alshihabi F, Vandamme T, Betz G. Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed. Pharm Dev Technol. 2013;18(1):73–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Markl D, Wahl PR, Menezes JC, Koller DM, Kavsek B, Francois K, et al. Supervisory control system for monitoring a pharmaceutical hot melt extrusion process. AAPS PharmSciTech. 2013;14(3):1034–44.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hohl R, Scheibelhofer O, Stocker E, Behzadi SS, Haack D, Koch K, et al. Monitoring of a hot melt coating process via a novel multipoint near-infrared spectrometer. AAPS PharmSciTech. 2016.Google Scholar
  20. 20.
    Muller J, Brock D, Knop K, Axel Zeitler J, Kleinebudde P. Prediction of dissolution time and coating thickness of sustained release formulations using Raman spectroscopy and terahertz pulsed imaging. Eur J Pharm Biopharm. 2012;80(3):690–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Akseli I, Cetinkaya C. Acoustic testing and characterization techniques for pharmaceutical solid dosage forms. J Pharm Innov. 2008;3(4):216–26.CrossRefGoogle Scholar
  22. 22.
    Luypaert J, Massart DL, Vander Heyden Y. Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta. 2007;72(3):865–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Guenard R, Thurau G. Implementation of process analytical technologies. In: Bakeev KA, editor. Process analytical technology: spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries. first. Noida: Blackwell Publishing; 2005. p. 17–36.Google Scholar
  24. 24.
    Peng T, Huang Y, Mei L, Wu L, Chen L, Pan X, et al. Study progression in application of process analytical technologies on film coating. Asian J Pharm Sci Elsevier Ltd. 2014;10(3):176–85.CrossRefGoogle Scholar
  25. 25.
    Lee MJ, Seo DY, Lee HE, Wang IC, Kim WS, Jeong MY, et al. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process. Int J Pharm. 2011;403(1-2):66–72.CrossRefPubMedGoogle Scholar
  26. 26.
    Kuriyama A, Ozaki Y. Assessment of active pharmaceutical ingredient particle size in tablets by Raman chemical imaging validated using polystyrene microsphere size standards. AAPS PharmSciTech. 2014;15(2):375–87.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yokoyama M, Tourigny M, Moroshima K, Suzuki J, Sakai M, Iwamoto K, et al. A novel rapid quantitative analysis of drug migration on tablets using laser induced breakdown spectroscopy. Chem Pharm Bull. 2010;58(11):1521–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Hudovornik G, Korasa K, Vrečer F. A study on the applicability of in-line measurements in the monitoring of the pellet coating process. Eur J Pharm Sci. 2015;75:160–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Närvänen T. Particle size determination during fluid bed granulation. Finland: University of Helsinki; 2009.Google Scholar
  30. 30.
    Markl D, Zettl M, Hannesschläger G, Sacher S, Leitner M, Buchsbaum A, et al. Calibration-free in-line monitoring of pellet coating processes via optical coherence tomography. Chem Eng Sci. 2014. doi: 10.1016/j.ces.2014.05.049.Google Scholar
  31. 31.
    Tabasi SH, Fahmy R, Bensley D, O’Brien C, Hoag SW. Quality by design, part I: application of NIR spectroscopy to monitor tablet manufacturing process. J Pharm Sci. 2008;97(9):4040–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Gupta A, Peck GE, Miller RW, Morris KR. Real-time near-infrared monitoring of content uniformity, moisture content, compact density/tensile strength, and young’s modulus of roller compacted powder blends. J Pharm Sci. 2005;94(7):1589–97.CrossRefPubMedGoogle Scholar
  33. 33.
    Papp MK, Pujara CP, Pinal R. Monitoring of high-shear granulation using acoustic emission: predicting granule properties. J Pharm Innov. 2008;3(2):113–22.CrossRefGoogle Scholar
  34. 34.
    Reich G. Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev. 2005;57(8):1109–43.CrossRefPubMedGoogle Scholar
  35. 35.
    Silva AFT, Burggraeve A, Denon Q, Van Der Meeren P, Sandler N, Van Den Kerkhof T. Particle sizing measurements in pharmaceutical applications: comparison of in-process methods versus off-line methods. Eur J Pharm Biopharm. 2013;85(3 PART B):1006–18.CrossRefPubMedGoogle Scholar
  36. 36.
    Jamrógiewicz M. Application of the near-infrared spectroscopy in the pharmaceutical technology. J Pharm Biomed Anal. 2012;66:1–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Lin H, May RK, Evans MJ, Zhong S, Gladden LF, Shen Y, et al. Impact of processing conditions on inter-tablet coating thickness variations measured by terahertz in-line sensing. J Pharm Sci. 2015;104(8):2513–22.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Moes JJ, Ruijken MM, Gout E, Frijlink HW, Ugwoke MI. Application of process analytical technology in tablet process development using NIR spectroscopy: blend uniformity, content uniformity and coating thickness measurements. Int J Pharm. 2008;357(1–2):108–18.CrossRefPubMedGoogle Scholar
  39. 39.
    Smith-goettler BB, Gendron CM, Macphail N, Meyer RF, Phillips JX. NIR monitoring of a hot-melt extrusion process. Spectroscopy. 2014 [cited 2016 Jul 5]. p. 1–8. Available from:
  40. 40.
    Andersson M, Folestad S, Gottfries J, Johansson MO, Josefson M, Wahlund KG. Quantitative analysis of film coating in a fluidized bed process by in-line NIR spectrometry and multivariate batch calibration. Anal Chem. 2000;72(9):2099–108.CrossRefPubMedGoogle Scholar
  41. 41.
    Burgbacher J, Wiss J. Industrial applications of online monitoring of drying processes of drug substances using NIR. Org Process Res Dev. 2008;12(2):235–42.CrossRefGoogle Scholar
  42. 42.
    Wildfong PLD, Samy AS, Corfa J, Peck GE, Morris KR. Accelerated fluid bed drying using NIR monitoring and phenomenological modeling: method assessment and formulation suitability. J Pharm Sci. 2002;91(3):631–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Feng T, Wang F, Pinal R, Wassgren C, Carvajal MT. Investigation of the variability of NIR in-line monitoring of roller compaction process by using Fast Fourier Transform (FFT) analysis. Aaps Pharmscitech. 2008;9(2):419–24.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Koller DM, Posch A, Horl G, Voura C, Radl S, Urbanetz N, et al. Continuous quantitative monitoring of powder mixing dynamics by near-infrared spectroscopy. Powder Technol. 2011;205(1-3):87–96.CrossRefGoogle Scholar
  45. 45.
    Tumuluri SVS, Prodduturi S, Crowley MM, Stodghill SP, McGinity JW, Repka MA. The use of near-infrared spectroscopy for the quantitation of a drug in hot-melt extruded films. Drug Dev Ind Pharm. 2004;30(5):505–11.CrossRefPubMedGoogle Scholar
  46. 46.
    Markovic S, Poljanec K, Kerc J, Horvat M. In-line NIR monitoring of key characteristics of enteric coated pellets. Eur J Pharm Biopharm. 2014;88(3):847–55.CrossRefPubMedGoogle Scholar
  47. 47.
    Lyon RC, Lester DS, Lewis EN, Lee E, Yu LX, Jefferson EH, et al. Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity. AAPS PharmSciTech. 2002;3(3):1–15.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sulub Y, Konigsberger M, Cheney J. Blend uniformity end-point determination using near-infrared spectroscopy and multivariate calibration. J Pharm Biomed Anal. 2011;55(3):429–34.CrossRefPubMedGoogle Scholar
  49. 49.
    Rantanen J, Jørgensen A, Räsänen E, Luukkonen P, Airaksinen S, Raiman J. Process analysis of fluidized bed granulation. AAPS PharmSciTech. 2001;2(4):21.CrossRefPubMedGoogle Scholar
  50. 50.
    Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal. 2007;44(3 SPEC. ISS):683–700.CrossRefPubMedGoogle Scholar
  51. 51.
    Miller CE. Chemometrics in process analytical chemistry. In: Bakeev KA, editor. Process analytical technology spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries. first. Noida: Blackwell Publishing; 2005. p. 226–324.Google Scholar
  52. 52.
    Lopes JA, Alves TP, Menezes JC. Chemometric Process Analytical Technology (PAT) applications in bioprocess engineering. IFAC Proc Vol IFAC. 2005;38(1):153–8.CrossRefGoogle Scholar
  53. 53.
    Myakalwar AK, Sreedhar S, Barman I, Dingari NC, Venugopal Rao S, Prem Kiran P, et al. Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis. Talanta. 2011;87(1):53–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2016

Authors and Affiliations

  • Venkata Ramana Naidu
    • 1
    Email author
  • Rucha S. Deshpande
    • 1
  • Moinuddin R. Syed
    • 1
  • Piyush Deoghare
    • 1
  • Dharamvir Singh
    • 1
  • Pravin S. Wakte
    • 2
  1. 1.Wockhardt Research CentreAurangabadIndia
  2. 2.Department of Chemical TechnologyDr. Babasaheb Ambedkar Marathwada University AurangabadMaharashtraIndia

Personalised recommendations