Skip to main content
Log in

Design of Magnetic Polymeric Particles as a Stimulus-Responsive System for Gastric Antimicrobial Therapy

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The treatment of peptic ulcers induced by H. pylori remains challenging due to the deep mucous layer location of bacteria preventing antimicrobial drug access. The present work aimed to design and evaluate in vitro dual responsive (both pH and magnetic field-sensitive) polymeric magnetic particles loaded with amoxicillin as a smart drug carrier for deep mucous layer penetration and in situ drug release. Magnetite particles were produced by the co-precipitation method and subsequently coated with the Eudragit®S100 and amoxicillin by using the spray-drying technique. The physicochemical characterization of the obtained particles was carried out by optical and scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms, and vibrating sample magnetometry. Additionally, drug release tests and antibacterial activity tests were evaluated in vitro. Microparticles presented 17.2 ± 0.4 μm in size and their final composition was 4.3 ± 1.5% of amoxicillin, 87.0 ± 2.3% of Eudragit, and 9.0 ± 0.3% of magnetite. They were both pH and magnetic field responsive while presenting antimicrobial activity. On one side, magnetic field responsiveness of particles is expected to prompt them to reach bacterium niche in deep mucous layer by means of magnetic forces. On the other side, pH responsiveness is expected to enable drug release in the neutral pH of the deep mucous layer, preventing undesired delivery in the acidic gastric lumen. Smart microparticles were designed presenting both pH and magnetic field responsiveness as well as antimicrobial activity. These may be promising assets for peptic ulcer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amieva MR, El-Omar EM. Host-Bacterial Interactions in Helicobacter pylori infection. Gastroenterology. 2008;134(1):306–23. 385.

    Article  CAS  PubMed  Google Scholar 

  2. Yoshiyama H, Nakazawa T. Unique mechanism of Helicobacter pylori for colonizing the gastric mucus. Microbes Infect. 2000;2(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  3. Gerrits MM, van Vliet AH, Kuipers EJ, Kusters JG. Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. Lancet Infect Dis. 2006;6(11):699–709.

    Article  CAS  PubMed  Google Scholar 

  4. Archimandritis A, Avgerinos A, Nakos A, Viazis N, Skandalis N, Tzivras M. Open- label study of a regimen consisting of 1 week of lansoprazole, clarithromycin, and amoxicillin followed by 3 weeks of lansoprazole in healing peptic ulcer and eradicating Helicobacter pylori. Curr Ther Res. 2000;61(7):406–13.

    Article  CAS  Google Scholar 

  5. Genta RM, Huberman RM, Graham DY. The gastric cardia in Helicobacter pylori infection. Hum Pathol. 1994;25(9):915–9.

    Article  CAS  PubMed  Google Scholar 

  6. Rajinikanth PS, Balasubramaniam J, Mishra B. Development and evaluation of a novel floating in situ gelling system of amoxicillin for eradication of Helicobacter pylori. Int J Pharm. 2007;335(1–2):114–22.

    Article  CAS  PubMed  Google Scholar 

  7. Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.

    Article  CAS  PubMed  Google Scholar 

  8. Plapied L, Duhem N, des Rieux A, Préat V. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci. 2011;16(3):228–37.

    Article  CAS  Google Scholar 

  9. Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article  CAS  PubMed  Google Scholar 

  10. Jagdale SC, Agavekar AJ, Pandya SV, Kuchekar BS, Chabukswar AR. Formulation and evaluation of gastroretentive drug delivery system of propranolol hydrochloride. AAPS Pharm Sci Technol. 2009;10(3):1071–9.

    Article  CAS  Google Scholar 

  11. Nama M, Gonugunta CSR, Veerareddy PR. Formulation and evaluation of gastroretentive dosage forms of clarithromycin. AAPS Pharm Sci Technol. 2008;9(1):231–7.

    Article  CAS  Google Scholar 

  12. Hejazi R, Amiji M. Stomach-specific anti-H. pylori therapy. I: preparation and characterization of tetracyline-loaded chitosan microspheres. Int J Pharm. 2002;235(14112):87–94.

    Article  CAS  PubMed  Google Scholar 

  13. Oth M, Franz M, Timmermans J, Möes A. The bilayer floating capsule: a stomach-directed drug delivery system for misoprostol. Pharm Res. 1992;9(3):298–302.

    Article  CAS  PubMed  Google Scholar 

  14. Klausner EA, Lavy E, Friedman M, Hoffman A. Expandable gastroretentive dosage forms. J Control Release. 2003;90(2):143–62.

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Blevins WE, Park H, Park K. Gastric retention properties of superporous hydrogel composites. J Control Release. 2000;64(1–3):39–51.

    Article  CAS  PubMed  Google Scholar 

  16. Higo S, Ori K, Takeuchi H, Yamamoto H, Hino T, Kawashima Y. A novel evaluation method of gastric mucoadhesive property in vitro and the mucoadhesive mechanism of tetracycline-sucralfate acidic complex for eradication of Helicobacter pylori. Pharm Res. 2004;21(3):413–9.

    Article  CAS  PubMed  Google Scholar 

  17. Carriço AS, Silva ÉL, Medeiros AC, Egito EST, Carvalho JF, Pontes TRF. Sistema magnético para vetorização de antibióticos para tratamento de infecções por Helicobacter pylori. Brasil 2012 26/06/2012.

  18. Silva AKA, Silva-Freitas É, Carvalho J, Pontes TF, Araújo-Neto R, Silva KL, et al. Magnetic particles in biotechnology. Drug targeting to tissue engineering. Rijeka. InTeck; 2012.

  19. Saravanan M, Balaji A, Kavitha P, Kingsley J. Controlled delivery of ranitidine in the stomach using magnetic field. W Indian Med J. 2009;58:87–91.

    CAS  PubMed  Google Scholar 

  20. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.

    Article  CAS  Google Scholar 

  21. Silva AKA, Silva ÉL, Carvalho JF, Pontes TRF, Araújo-Neto RP, Carriço AS, et al. Drug targeting and other recent applications of magnetic carriers in therapeutics. Key Eng Mater. 2010;441:357–78.

    Article  CAS  Google Scholar 

  22. Kaminski MD, Rosengart AJ. Detoxification of blood using injectable magnetic nanospheres: a conceptual technology description. J Magn Magn Mater. 2005;293(1):398–435 403.

    Article  CAS  Google Scholar 

  23. Paipa C, Mateo M, Godoy I, Poblete E, Toral MI, Vargas T. Comparative study of alternative methods for the simultaneous determination of Fe+3 and Fe+2 in leaching solutions and in acid mine drainages. Miner Eng. 2005;18(11):1116–9.

    Article  CAS  Google Scholar 

  24. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn. 1981:1247–8.

  25. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int. 2007;40(9):1107–21.

    Article  CAS  Google Scholar 

  26. Pons M-N, Vivier H, Delcour V, Authelin J-R, Paillères-Hubert L. Morphological analysis of pharmaceutical powders. Powder Technol. 2002;128(2–3):276–86.

    Article  CAS  Google Scholar 

  27. Barrett E, Joyner L, Halenda P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.

    Article  CAS  Google Scholar 

  28. Silva-Freitas É, Carvalho J, Pontes TF, Araújo-Neto R, Carriço A, Egito E. Magnetite content evaluation on magnetic drug delivery systems by spectrophotometry: a technical note. AAPS Pharm Sci Technol. 2011;12(2):521–4.

    Article  Google Scholar 

  29. Bauer A, Kirby W, Scherris J, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–6.

    CAS  PubMed  Google Scholar 

  30. Berry V, Jennings K, Woodnutt G. Bactericidal and morphological effects of amoxicillin on Helicobacter pylori. Antimicrob Agents Chemother. 1995;39(8):1859–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Cassia Bergamaschi C, Motta RH, Franco GC, Cogo K, Montan MF, Ambrosano GM, et al. Effect of sodium diclofenac on the bioavailability of amoxicillin. Int J Antimicrob Agents. 2006;27(5):417–22.

    Article  PubMed  Google Scholar 

  32. Morales MA, Mascarenhas AJS, Gomes AMS, Leite CAP, Andrade HMC, de Castilho CMC, et al. Synthesis and characterization of magnetic mesoporous particles. J Colloid Interface Sci. 2010;342(2):269–77.

    Article  CAS  PubMed  Google Scholar 

  33. Z-q F, Wang L-j, Li D, Adhikari B. Effects of partial gelatinization on structure and thermal properties of corn starch after spray drying. Carbohydr Polym. 2012;88(4):1319–25.

    Article  Google Scholar 

  34. Vallet-Regı M, Doadrio JC, Doadrio AL, Izquierdo-Barba I, Pérez-Pariente J. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics. 2004;172(1–4):435–9.

    Article  Google Scholar 

  35. Ahuja G, Pathak K. Porous carriers for controlled/modulated drug delivery. Indian J Pharm Sci. 2009;71(6):599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm. 2012;9(3):505–13.

    Article  CAS  PubMed  Google Scholar 

  37. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, et al. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release. 2005;108(2–3):362–74.

    Article  CAS  PubMed  Google Scholar 

  38. Bebu A, Szabó L, Leopold N, Berindean C, David L. IR, Raman, SERS and DFT study of amoxicillin. J Mol Struct. 2011;993(1–3):52–6.

    Article  CAS  Google Scholar 

  39. Castillo-Ortega MM, Nájera-Luna A, Rodríguez-Félix DE, Encinas JC, Rodríguez-Félix F, Romero J, et al. Preparation, characterization and release of amoxicillin from cellulose acetate and poly(vinyl pyrrolidone) coaxial electrospun fibrous membranes. Mater Sci Eng C Mater Biol Appl. 2011;31(8):1772–8.

    Article  CAS  Google Scholar 

  40. Zhang L, He R, Gu H-C. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci. 2006;253(5):2611–7.

    Article  CAS  Google Scholar 

  41. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine. 2012;7:6003–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Erah PO, Goddard AF, Barrett DA, Shaw PN, Spiller RC. The stability of amoxycillin, clarithromycin and metronidazole in gastric juice: relevance to the treatment of Helicobacter pylori infection. J Antimicrob Chemother. 1997;39(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  43. Khan MZI, Prebeg Ž, Kurjaković N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers: I. Manipulation of drug release using Eudragit® L100-55 and Eudragit® S100 combinations. J Control Release. 1999;58(2):215–22.

    Article  CAS  PubMed  Google Scholar 

  44. Karn PR, Vanić Z, Pepić I, Škalko-Basnet N. Mucoadhesive liposomal delivery systems: the choice of coating material. Drug Dev Ind Pharm. 2011;37(4):482–8.

    Article  CAS  PubMed  Google Scholar 

  45. Alam N, Beg S, Rizwan M, Ahmad A, Ahmad FJ, Ali A, et al. Mucoadhesive elementary osmotic pump tablets of trimetazidine for controlled drug delivery and reduced variability in oral bioavailability. Drug Dev Ind Pharm. 2015;41(4):692–702.

    Article  CAS  PubMed  Google Scholar 

  46. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang Y-Y, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7. 500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoo JW, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm. 2011;403:262–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Brazilian research agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors are grateful to the Núcleo de Petróleo de Gás Natural (NEPGN, UFRN) for the SEM images, to the Fundação Oswaldo Cruz (Fiocruz/RJ, Brazil) for the bacterial strain and to the Centro de Tecnologias Estratégicas do Nordeste (CETENE) for the NSD and BET/BJH analysis and to the Laboratório Central Dr. Almino Fernandes (LACEN-RN) for the microbiological analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur S. Carriço.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Freitas, E.L., Pontes, T.R.F., Araújo-Neto, R.P. et al. Design of Magnetic Polymeric Particles as a Stimulus-Responsive System for Gastric Antimicrobial Therapy. AAPS PharmSciTech 18, 2026–2036 (2017). https://doi.org/10.1208/s12249-016-0673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0673-1

KEY WORDS

Navigation