Skip to main content

Advertisement

Log in

Ocular Disposition of ∆8-Tetrahydrocannabinol from Various Topical Ophthalmic Formulations

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purposes of this project are to enhance the trans-membrane penetration of Δ8-Tetrahydrocannabinol (Δ8-THC) and to study the effect of various lipid based systems in delivering the compound, non-invasively, to anterior and posterior ocular chambers. Solid lipid nanoparticles (SLNs), fast gelling films were manufactured using high pressure homogenization and melt cast techniques, respectively. The formulations were characterized for drug content, entrapment efficiency, particle size and subsequently evaluated in vitro for trans-corneal permeation. In vivo, the drug disposition was tested via topical administration in albino rabbits. The eye globes were enucleated at the end of experiment and tissues were analyzed for drug content. All formulations showed favorable physicochemical characteristics in terms of particle size, entrapment efficiency, and drug content. In vitro, the formulations exhibited a transcorneal flux that depended on the formulation’s drug load. An increase in drug load from 0.1 to 0.75% resulted in 12- to16-folds increase in permeation. In vivo, the film was able to deliver THC to all the tissues with high accumulations in cornea and sclera. The SLNs showed a greater ability in delivering THC to all the tissues, at a significantly lower drug load, due to their colloidal size range, which in turn enhanced corneal epithelial membrane penetration. The topical formulations evaluated in the present study were able to successfully deliver Δ8-THC in therapeutically meaningful concentrations (EC50 values for CB1: 6 nM and CB2: 0.4 nM) to all ocular tissues except the vitreous humor, with pronounced tissue penetration achieved using SLNs as a Δ8-THC delivery vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995;36:774–86.

    CAS  PubMed  Google Scholar 

  2. Vasudevan SK, Gupta V, Crowston JG. Neuroprotection in glaucoma. Indian J Ophthalmol. 2011;59 Suppl:S102–13.

    Article  PubMed  Google Scholar 

  3. Phelps CD, Corbett JJ. Migraine and low-tension glaucoma. A case–control study. Invest Ophthalmol Vis Sci. 1985;26:1105–8.

    CAS  PubMed  Google Scholar 

  4. Rein DB, Zhang P, Wirth KE, Lee PP, Hoerger TJ, McCall N, et al. The economic burden of major adult visual disorders in the United States. Arch Ophthalmol. 2006;124:1754–60.

    Article  PubMed  Google Scholar 

  5. Ji J, Chang P, Pennesi ME, Yang Z, Zhang J, Li D, et al. Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vision Res. 2005;45:169–79.

    Article  PubMed  Google Scholar 

  6. Levkovitch-Verbin H, Quigley HA, Martin KR, Valenta D, Baumrind LA, Pease ME. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci. 2002;43:402–10.

    PubMed  Google Scholar 

  7. Leske MC, Wu SY, Honkanen R, Nemesure B, Schachat A, Hyman L, et al. Nine-year incidence of open-angle glaucoma in the Barbados Eye Studies. Ophthalmology. 2007;114:1058–64.

    Article  PubMed  Google Scholar 

  8. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31:152–81.

    Article  CAS  PubMed  Google Scholar 

  9. Bien A, Seidenbecher CI, Bockers TM, Sabel BA, Kreutz MR. Apoptotic versus necrotic characteristics of retinal ganglion cell death after partial optic nerve injury. J Neurotrauma. 1999;16:153–63.

    Article  CAS  PubMed  Google Scholar 

  10. Crandall J, Matragoon S, Khalifa YM, Borlongan C, Tsai NT, Caldwell RB, et al. Neuroprotective and intraocular pressure-lowering effects of (−)Delta9-tetrahydrocannabinol in a rat model of glaucoma. Ophthalmic Res. 2007;39:69–75.

    Article  CAS  PubMed  Google Scholar 

  11. El-Remessy AB, Khalil IE, Matragoon S, Abou-Mohamed G, Tsai NJ, Roon P, et al. Neuroprotective effect of (−)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol. 2003;163:1997–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He F, Song ZH. Molecular and cellular changes induced by the activation of CB2 cannabinoid receptors in trabecular meshwork cells. Mol Vis. 2007;13:1348–56.

    CAS  PubMed  Google Scholar 

  13. Njie YF, Qiao Z, Xiao Z, Wang W, Song ZH. N-arachidonylethanolamide-induced increase in aqueous humor outflow facility. Invest Ophthalmol Vis Sci. 2008;49:4528–34.

    Article  PubMed  Google Scholar 

  14. Porcella A, Maxia C, Gessa GL, Pani L. The human eye expresses high levels of CB1 cannabinoid receptor mRNA and protein. Eur J Neurosci. 2000;12:1123–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hingorani T, Adelli GR, Punyamurthula N, Gul W, Elsohly MA, Repka MA, et al. Ocular disposition of the hemiglutarate ester prodrug of (9)-Tetrahydrocannabinol from various ophthalmic formulations. Pharm Res. 2013;30:2146–56.

    Article  CAS  PubMed  Google Scholar 

  16. Hingorani T, Gul W, Elsohly M, Repka MA, Majumdar S. Effect of ion pairing on in vitro transcorneal permeability of a Delta(9) -tetrahydrocannabinol prodrug: potential in glaucoma therapy. J Pharm Sci. 2012;101:616–26.

    Article  CAS  PubMed  Google Scholar 

  17. Ethan B, Russo FG, editors. The handbook of cannabis therapeutics: from bench to bedside. New York: Haworth Integrative Healing Press; 2006.

  18. Muchtar S, Almog S, Torracca MT, Saettone MF, Benita S. A submicron emulsion as ocular vehicle for delta-8-tetrahydrocannabinol: effect on intraocular pressure in rabbits. Ophthalmic Res. 1992;24:142–9.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Purdon C, Smith E. Solid lipid nanoparticles for topical drug delivery. Am J Drug Deliv. 2006;4:215–20.

    Article  CAS  Google Scholar 

  20. Zhou H-Y, Hao J-L, Wang S, Zheng Y, Zhang W-S. Nanoparticles in the ocular drug delivery. Int J Ophthalmol. 2013;6:390–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224:159–68.

    Article  PubMed  Google Scholar 

  22. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm. 2002;238:241–5.

    Article  CAS  PubMed  Google Scholar 

  23. Yuan X-b, Li H, Yuan Y-b. Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydr Polym. 2006;65:337–45.

    Article  CAS  Google Scholar 

  24. Ibrahim HK, El-Leithy IS, Makky AA. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm. 2010;7:576–85.

    Article  CAS  PubMed  Google Scholar 

  25. Hermans K, Van den Plas D, Kerimova S, Carleer R, Adriaensens P, Weyenberg W, et al. Development and characterization of mucoadhesive chitosan films for ophthalmic delivery of cyclosporine A. Int J Pharm. 2014;472:10–9.

    Article  CAS  PubMed  Google Scholar 

  26. Attia MA, Kassem MA, Safwat SM. In vivo performance of [3H]dexamethasone ophthalmic film delivery systems in the rabbit eye. Int J Pharm. 1988;47:21–30.

    Article  CAS  Google Scholar 

  27. Hippalgaonkar K, Adelli GR, Repka MA, Majumdar S. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J Ocul Pharmacol Ther. 2013;29:216–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thumma S, Majumdar S, ElSohly MA, Gul W, Repka MA. Preformulation studies of a Prodrug of Δ(9)-Tetrahydrocannabinol. AAPS PharmSciTech. 2008;9:982–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flom MC, Adams AJ, Jones RT. Marijuana smoking and reduced pressure in human eyes: drug action or epiphenomenon? Invest Ophthalmol. 1975;14:52–5.

    CAS  PubMed  Google Scholar 

  30. ElSohly MA, Harland EC, Benigni DA, Waller CW. Cannabinoids in glaucoma II: the effect of different cannabinoids on intraocular pressure of the rabbit. Curr Eye Res. 1984;3:841–50.

    Article  CAS  PubMed  Google Scholar 

  31. Jay WM, Green K. Multiple-drop study of topically applied 1% delta 9-tetrahydrocannabinol in human eyes. Arch Ophthalmol. 1983;101:591–3.

    Article  CAS  PubMed  Google Scholar 

  32. Green K, Roth M. Ocular effects of topical administration of delta 9-tetrahydrocannabinol in man. Arch Ophthalmol. 1982;100:265–7.

    Article  CAS  PubMed  Google Scholar 

  33. Meisner D, Pringle J, Mezei M. Liposomal ophthalmic drug delivery. III. Pharmacodynamic and biodisposition studies of atropine. Int J Pharm. 1989;55:105–13.

    Article  CAS  Google Scholar 

  34. Hippalgaonkar K, Gul W, ElSohly MA, Repka MA, Majumdar S. Enhanced solubility, stability, and transcorneal permeability of delta-8-tetrahydrocannabinol in the presence of cyclodextrins. AAPS PharmSciTech. 2011;12:723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bloomfield SE, Miyata T, Dunn MW, Bueser N, Stenzel KH, Rubin AL. Soluble gentamicin ophthalmic inserts as a drug delivery system. Arch Ophthalmol. 1978;96:885–7.

    Article  CAS  PubMed  Google Scholar 

  36. Baeyens V, Kaltsatos V, Boisrame B, Varesio E, Veuthey JL, Fathi M, et al. Optimized release of dexamethasone and gentamicin from a soluble ocular insert for the treatment of external ophthalmic infections. J Control Release. 1998;52:215–20.

    Article  CAS  PubMed  Google Scholar 

  37. Bensinger R, Shin DH, Kass MA, Podos SM, Becker B. Pilocarpine ocular inserts. Invest Ophthalmol. 1976;15:1008–10.

    CAS  PubMed  Google Scholar 

  38. Khurana G, Arora S, Pawar PK. Ocular insert for sustained delivery of gatifloxacin sesquihydrate: preparation and evaluations. Int J Pharm Investig. 2012;2:70–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sankar AKCV, Durga S. Design and evaluation of diclofenac sodium ophthalmic inserts. Acta Pharm Sci. 2006;48:5–10.

    CAS  Google Scholar 

  40. Theng JT, Ti SE, Zhou L, Lam KW, Chee SP, Tan D. Pharmacokinetic and toxicity study of an intraocular cyclosporine DDS in the anterior segment of rabbit eyes. Invest Ophthalmol Vis Sci. 2003;44:4895–9.

    Article  PubMed  Google Scholar 

  41. Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85:530–6.

    Article  CAS  PubMed  Google Scholar 

  42. Contreras-Ruiz L, de la Fuente M, Parraga JE, Lopez-Garcia A, Fernandez I, Seijo B, et al. Intracellular trafficking of hyaluronic acid-chitosan oligomer-based nanoparticles in cultured human ocular surface cells. Mol Vis. 2011;17:279–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. de la Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci. 2008;49:2016–24.

    Article  PubMed  Google Scholar 

  44. Enriquez de Salamanca A, Diebold Y, Calonge M, Garcia-Vazquez C, Callejo S, Vila A, et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci. 2006;47:1416–25.

    Article  PubMed  Google Scholar 

  45. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16:53–61.

    Article  CAS  PubMed  Google Scholar 

  46. Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials. 2002;23:3247–55.

    Article  CAS  PubMed  Google Scholar 

  47. Vega E, Egea MA, Valls O, Espina M, Garcia ML. Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration. J Pharm Sci. 2006;95:2393–405.

    Article  CAS  PubMed  Google Scholar 

  48. Yuan XB, Yuan YB, Jiang W, Liu J, Tian EJ, Shun HM, et al. Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm. 2008;349:241–8.

    Article  CAS  PubMed  Google Scholar 

  49. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This publication was made possible by Grant Number P20GM104932 from the National Institute of General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Majumdar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punyamurthula, N.S., Adelli, G.R., Gul, W. et al. Ocular Disposition of ∆8-Tetrahydrocannabinol from Various Topical Ophthalmic Formulations. AAPS PharmSciTech 18, 1936–1945 (2017). https://doi.org/10.1208/s12249-016-0672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0672-2

KEY WORDS

Navigation