Skip to main content
Log in

Improved Flux of Levodopa via Direct Deposition of Solid Microparticles on Nasal Tissue

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Epithelial flux and permeability across bovine olfactory tissue were compared when levodopa (l-DOPA) was loaded in different physical states. Aqueous solution of l-DOPA was prepared in Krebs-Ringer buffer (KRB), at a concentration (0.75 mg/mL) verified to be less than the saturation solubility at both 25 and 37°C. Sodium metabisulfite was added to solution to minimize l-DOPA oxidation; chemical stability of aqueous l-DOPA was evaluated using HPLC-UV. Solid-state characterization of unprocessed, dry, crystalline l-DOPA powder was performed using TGA, DSC, PXRD, and optical microscopy to ensure that preparation of l-DOPA microparticles used for diffusion experiments did not elicit a phase change. Measurements of in vitro flux were made for all preparations, using freshly excised bovine olfactory mucosal membrane. Samples obtained from transport studies were analyzed by HPLC-UV. Tissue viability was measured before and after experiments using transdermal epithelial electrical resistance (TEER). The average steady-state flux (J ss ) of l-DOPA from solid microparticles directly deposited on nasal epithelial tissue was 6.08 ± 0.69 μg/cm2/min, approximately three times greater than the J ss measured for l-DOPA from solution (2.13 ± 0.97 μg/cm2/min). The average apparent permeability coefficient (P app ) of l-DOPA was calculated to be 4.73 × 10−5 cm/s. These findings suggest that nasal delivery of l-DOPA by administration of solid microparticles not only benefits from improved chemical and microbiological stability by avoiding the use of aqueous formulation vehicle but also does not compromise cumulative mass transport across the olfactory membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86(1):109–27.

    Article  CAS  PubMed  Google Scholar 

  2. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.

    Article  CAS  PubMed  Google Scholar 

  3. Knollmann BC, editor. Goodman & Gilman’s: The pharmacological basis of therapeutics. New York: McGraw-Hill Medical; 2011 Sep 20.Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman-Gilman A, eds. Goodman and Gilman’s: The Pharmacological Basis of Therapeutics. 9th ed. New York, NY:McGraw-Hill; 1996.

  4. Cotzias GC, Papavasiliou PS, Gellene R. Modification of Parkinsonism—chronic treatment with L-dopa. New Engl J Med. 1969;280(7):337–45.

    Article  CAS  PubMed  Google Scholar 

  5. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. New Engl J Med. 2004;351(24):2498–508.

    Article  CAS  PubMed  Google Scholar 

  6. Sasahara K, Nitanai T, Habara T, Morioka T, Nakajima E. Dosage form design for improvement of bioavailability of levodopa V: absorption and metabolism of levodopa in intestinal segments of dogs. J Pharm Sci. 1981;70(10):1157–60.

    Article  CAS  PubMed  Google Scholar 

  7. Marsden CD, Parkes JD. "On-off" effects in patients with Parkinson’s disease on chronic levodopa therapy. Lancet. 1976;307(7954):292–6.

    Article  Google Scholar 

  8. Sasahara K, Nitanai T, Habara T, Morioka T, Nakajima E. Dosage form design for improvement of bioavailability of levodopa II: bioavailability of marketed levodopa preparations in dogs and parkinsonian patients. J Pharm Sci. 1980;69(3):261–5.

    Article  CAS  PubMed  Google Scholar 

  9. Nutt JG, Woodward WR, Anderson JL. The effect of carbidopa on the pharmacokinetics of intravenously administered levodopa: the mechanism of action in the treatment of parkinsonism. Ann Neurol. 1985;18(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  10. Wingard LB, Brody TM, Larner J, Schwartz A. Pharmacology. St Louis: Mosby Year Book; 1991.

    Google Scholar 

  11. Seeberger LC, Hauser RA. Levodopa/carbidopa/entacapone in Parkinson’s disease. Expert Rev Neurother. 2009;9(7):929–40.

    Article  CAS  PubMed  Google Scholar 

  12. Hardie RJ, Malcolm SL, Lees AJ, Stern GM, Allen JG. The pharmacokinetics of intravenous and oral levodopa in patients with Parkinson’s disease who exhibit on‐off fluctuations. Brit J Clin Pharmacol. 1986;22(4):429–36.

    Article  CAS  Google Scholar 

  13. Quinn N, Parkes JD, Marsden CD. Control of on/off phenomenon by continuous intravenous infusion of levodopa. Neurology. 1984;34(9):1131–6.

    Article  CAS  PubMed  Google Scholar 

  14. Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Release. 2003;87(1):187–98.

    Article  CAS  PubMed  Google Scholar 

  15. Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    Article  CAS  PubMed  Google Scholar 

  16. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.

    Article  CAS  PubMed  Google Scholar 

  17. Vasa DM, O’Donnell LA, Wildfong PL. Influence of dosage form, formulation, and delivery device on olfactory deposition and clearance: enhancement of nose-to-CNS uptake. J Pharm Innov. 2015;10(3):200–10.

    Article  Google Scholar 

  18. Dahlin M, Jansson B, Björk E. Levels of dopamine in blood and brain following nasal administration to rats. Eur J Pharm Sci. 2001;14(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  19. Kao HD, Traboulsi A, Itoh S, Dittert L, Hussain A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res. 2000;17(8):978–84.

    Article  CAS  PubMed  Google Scholar 

  20. Kim TK, Kang W, Chun IK, Oh SY, Lee YH, Gwak HS. Pharmacokinetic evaluation and modeling of formulated levodopa intranasal delivery systems. Eur J Pharm Sci. 2009;38(5):525–32.

    Article  CAS  PubMed  Google Scholar 

  21. Fessenden RJ, Fessenden SJ. Organic Chemistry. 4th ed. Brooks/Cole Publishing Company; 1990. pp. 507.

  22. Marttin E, Schipper NGM, Verhoef J, Merkus FWHM. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):13–38.

    Article  CAS  PubMed  Google Scholar 

  23. Hardy J, Lee S, Wilson C. Intranasal drug delivery by spray and drops. J Pharm Pharmacol. 1985;37(5):294–97.

    Article  CAS  PubMed  Google Scholar 

  24. Proctor DF, Andersen I. Nasal mucociliary function in normal man. Rhinology. 1976;14(1):11–7.

    CAS  PubMed  Google Scholar 

  25. Cheng YH, Watts P, Hinchcliffe M, Hotchkiss R, Nankervis R, Faraj NF, et al. Development of a novel nasal nicotine formulation comprising an optimal pulsatile and sustained plasma nicotine profile for smoking cessation. J Control Release. 2002;79(1–3):243–54.

    Article  CAS  PubMed  Google Scholar 

  26. Chemuturi NV, Donovan MD. Role of Organic Cation Transporters in Dopamine Uptake across Olfactory and Nasal Respiratory Tissues. Mol Pharm. 2007;4(6):936–42.

    Article  CAS  PubMed  Google Scholar 

  27. Pappert EJ, Buhrfiend C, Lipton JW, Carvey PM, Stebbins GT, Goetz CG. Levodopa stability in solution: time course, environmental effects, and practical recommendations for clinical use. Mov Disord. 1996;11(1):24–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ahlskog JE. Parkinson’s disease treatment guide for physicians. 1st ed. Oxford University Press; 2009.

  29. Howard ST, Hursthouse MB, Lehmann CW, E, Poyner EA. "Experimental and theoretical determination of electronic properties in L-dopa" Acta Cryst. B51: 328–37, 1995.31.

  30. Windholz M, Budavari S, Stroumtsos LY, Fertig MN. The Merck index. An encyclopedia of chemicals and drugs. 9th ed. Merck & Co.; 1976.

  31. Florey K, Brittain HG, Mazzo DJ, Wozniak TJ, Brenner GS, Forcier GA, Al-Badr AA. Analytical profiles of drug substances and excipients. Vol 20. Academic press; 1992.

  32. Bacon R, Newman S, Rankin L, Pitcairn G, Whiting R. Pulmonary and nasal deposition of ketorolac tromethamine solution (SPRIX) following intranasal administration. Int J Pharm. 2012;431(1–2):39–44.

    Article  CAS  PubMed  Google Scholar 

  33. Djupesland PG, Skretting A. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump. J Aerosol Med Pulm Drug Deliv. 2012;25(5):280–9.35.

    Article  CAS  PubMed  Google Scholar 

  34. Sacchetti C, Artusi M, Santi P, Colombo P. Caffeine microparticles for nasal administration obtained by spray drying. Int J Pharm. 2002;242(1–2):335–9.

    Article  CAS  PubMed  Google Scholar 

  35. Isariebel QP, Carine JL, Ulises-Javier JH, Anne-Marie W, Henri D. Sonolysis of levodopa and paracetamol in aqueous solutions. Ultrason Sonochem. 2009;16(5):610–6.

    Article  CAS  PubMed  Google Scholar 

  36. Akanji MA, Olagoke OA, Oloyede OB. Effect of chronic consumption of metabisulphite on the integrity of the rat kidney cellular system. Toxicology. 1993;81(3):173–9.

    Article  CAS  PubMed  Google Scholar 

  37. Mosharraf M, Nyström C. Apparent solubility of drugs in partially crystalline systems. Drug Dev Ind Pharm. 2003;29(6):603–22.

    Article  CAS  PubMed  Google Scholar 

  38. He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998;166(1):75–88.

    Article  CAS  Google Scholar 

  39. Colombo G, Lorenzini L, Zironi E, Galligioni V, Sonvico F, Balducci AG, et al. Brain distribution of ribavirin after intranasal administration. Antivir Res. 2011;92(3):408–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the generous funding provided by Duquesne University, Hunkele Dreaded Disease Award. The authors also acknowledge Dr. Maureen Donovan and Ms. Ana Ferreira (Iowa University) for their assistance with l-DOPA transport studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. D. Wildfong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasa, D.M., Buckner, I.S., Cavanaugh, J.E. et al. Improved Flux of Levodopa via Direct Deposition of Solid Microparticles on Nasal Tissue. AAPS PharmSciTech 18, 904–912 (2017). https://doi.org/10.1208/s12249-016-0581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0581-4

KEY WORDS

Navigation