Skip to main content

Advertisement

Log in

Evaluating the Potential for Delivery of Irinotecan via the Buccal Route: Physicochemical Characterization and In Vitro Permeation Assessment Across Porcine Buccal Mucosa

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Irinotecan (CPT-11) is used to treat advanced colorectal cancer as an intravenous therapy. Depending on pH, CPT-11 exists in either a lactone (active) or carboxylate (inactive) form, or both. In this investigation, the feasibility for systemic delivery of CPT-11 through the buccal route was evaluated. Permeation of CPT-11 across porcine buccal mucosa was studied in vitro using side-by-side flow through diffusion cells at 37°C. Experiments were performed over a pH range from 4 to 9, and the permeability of both the lactone and carboxylate forms of CPT-11 was measured. CPT-11 steady state flux was determined over a range of donor concentrations at pH 4 (0.5, 1, 5, 10, 15, 20 mg/ml) and pH 6.8 (0.5, 5, 10 mg/ml). Steady state flux increased linearly with increasing donor concentration of CPT-11 at pH 4 (r 2 = 0.9935) and at pH 6.8 (r 2 = 0.9886). CPT-11 permeability was independent of pH, although the distribution coefficient increased with increasing pH. Estimates of permeability for the lactone and carboxylate forms were 4.16 × 10−5 cm/s and 2.6 × 10−5 cm/s, respectively. These calculated permeability values were in agreement with the in vitro experimental data. Overall, CPT-11 was found to permeate through porcine buccal mucosa via passive diffusion. CPT-11 permeability was independent of pH, suggesting that the compound was transported mainly via a paracellular route. Overall, the results of this research suggest that the buccal route is a potential extravascular mode of delivery for CPT-11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saijo N. Preclinical and clinical trials of topoisomerase inhibitors. Ann N Y Acad Sci. 2000;922:92–9.

    Article  CAS  PubMed  Google Scholar 

  2. Kunimoto T et al. Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothec in, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res. 1987;47(22):5944–7.

    CAS  PubMed  Google Scholar 

  3. Sawada S et al. Synthesis and antitumor activity of 20(S)-camptothecin derivatives: carbamate-linked, water-soluble derivatives of 7-ethyl-10-hydroxycamptothecin. Chem Pharm Bull (Tokyo). 1991;39(6):1446–50.

    Article  CAS  Google Scholar 

  4. Luo FR et al. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab Dispos. 2002;30(7):763–70.

    Article  CAS  PubMed  Google Scholar 

  5. Mathijssen RH et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res. 2001;7(8):2182–94.

    CAS  PubMed  Google Scholar 

  6. Dodds HM et al. Identification of a new metabolite of CPT-11 (irinotecan): pharmacological properties and activation to SN-38. J Pharmacol Exp Ther. 1998;286(1):578–83.

    CAS  PubMed  Google Scholar 

  7. Haaz MC et al. Biosynthesis of an aminopiperidino metabolite of irinotecan [7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecine] by human hepatic microsomes. Drug Metab Dispos. 1998;26(8):769–74.

    CAS  PubMed  Google Scholar 

  8. Gupta E et al. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 1994;54(14):3723–5.

    CAS  PubMed  Google Scholar 

  9. Inaba M et al. Pharmacokinetics of CPT-11 in rhesus monkeys. Cancer Chemother Pharmacol. 1998;41(2):103–8.

    Article  CAS  PubMed  Google Scholar 

  10. Rothenberg ML et al. Phase I and pharmacokinetic trial of weekly CPT-11. J Clin Oncol. 1993;11(11):2194–204.

    Article  CAS  PubMed  Google Scholar 

  11. Chabot GG et al. Population pharmacokinetics and pharmacodynamics of irinotecan (CPT-11) and active metabolite SN-38 during phase I trials. Ann Oncol. 1995;6(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  12. Slatter JG et al. Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos. 2000;28(4):423–33.

    CAS  PubMed  Google Scholar 

  13. Canal P et al. Pharmacokinetics and pharmacodynamics of irinotecan during a phase II clinical trial in colorectal cancer. Pharmacology and Molecular Mechanisms Group of the European Organization for Research and Treatment of Cancer. J Clin Oncol. 1996;14(10):2688–95.

    Article  CAS  PubMed  Google Scholar 

  14. Isobe T, Ishikawa N, Oguri T. CPT-11 (irinotecan)—evidence from molecular and pharmacological studies and clinical applications. Gan To Kagaku Ryoho. 2000;27(8):1267–78.

    CAS  PubMed  Google Scholar 

  15. Rothenberg ML. CPT-11: an original spectrum of clinical activity. Semin Oncol. 1996;23(1 Suppl 3):21–6.

    CAS  PubMed  Google Scholar 

  16. Morise M, Niho S, Umemura S, Matsumoto S, Yoh K, Goto K, et al. Low-dose irinotecan as a second-line chemotherapy for recurrent small cell lung cancer. Jpn J Clin Oncol. 2014;44(9):846–51.

  17. Bharthuar A, Saif Ur Rehman S, Black JD, Levea C, Malhotra U, Mashtare TL, et al. Breast cancer resistance protein (BCRP) and excision repair cross complement-1 (ERCC1) expression in esophageal cancers and response to cisplatin and irinotecan based chemotherapy. J Gastrointest Oncol. 2014;5(4):253–58.

  18. Burtness B, Powell M, Catalano P, Berlin J, Liles DK, Chapman AE, et al. Randomized Phase II Trial of Irinotecan/Docetaxel or Irinotecan/Docetaxel Plus Cetuximab for Metastatic Pancreatic Cancer: An Eastern Cooperative Oncology Group Study. Am J Clin Oncol. 2014. doi:10.1097/COC.0000000000000068

  19. Sridharan M, Hubbard JM, Grothey A. Colorectal cancer: how emerging molecular understanding affects treatment decisions. Oncology (Williston Park). 2014;28(2): 110–8.

  20. Creemers GJ, Lund B, Verweij J. Topoisomerase I inhibitors: topotecan and irenotecan. Cancer Treat Rev. 1994;20(1):73–96.

    Article  CAS  PubMed  Google Scholar 

  21. Carrillo JA, Munoz CA. Alternative chemotherapeutic agents: nitrosoureas, cisplatin, irinotecan. Neurosurg Clin N Am. 2012;23(2):297–306.

  22. Kelly H, Goldberg RM. Systemic therapy for metastatic colorectal cancer: current options, current evidence. J Clin Oncol. 2005;23(20):4553–60.

    Article  CAS  PubMed  Google Scholar 

  23. Horowitz RW, Wadler S, Wiernik PH. A review of the clinical experience with irinotecan (CPT-11). Am J Ther. 1997;4(5–6):203–10.

    Article  CAS  PubMed  Google Scholar 

  24. Masuda N et al. CPT-11: a new derivative of camptothecin for the treatment of refractory or relapsed small-cell lung cancer. J Clin Oncol. 1992;10(8):1225–9.

    Article  CAS  PubMed  Google Scholar 

  25. Barbounis V et al. Control of irinotecan-induced diarrhea by octreotide after loperamide failure. Support Care Cancer. 2001;9(4):258–60.

    Article  CAS  PubMed  Google Scholar 

  26. Saliba F et al. Pathophysiology and therapy of irinotecan-induced delayed-onset diarrhea in patients with advanced colorectal cancer: a prospective assessment. J Clin Oncol. 1998;16(8):2745–51.

    Article  CAS  PubMed  Google Scholar 

  27. Stringer AM et al. Irinotecan-induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile. Int J Exp Pathol. 2009;90(5):489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chu XY, Kato Y, Sugiyama Y. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res. 1997;57(10):1934–8.

    CAS  PubMed  Google Scholar 

  29. Pizzolato JF, Saltz LB. The camptothecins. Lancet. 2003;361(9376):2235–42.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed F et al. In vitro activation of irinotecan to SN-38 by human liver and intestine. Anticancer Res. 1999;19(3A):2067–71.

    CAS  PubMed  Google Scholar 

  31. Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res. 2014;28(2):81–97.

  32. Kobayashi K et al. pH-dependent uptake of irinotecan and its active metabolite, SN-38, by intestinal cells. Int J Cancer. 1999;83(4):491–6.

    Article  CAS  PubMed  Google Scholar 

  33. Ng SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS Pharm Sci Tech. 2010;11(3):1432–41.

  34. Dahan A, Miller JM. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012;14(2):244–51.

  35. Avdeef A. Physicochemical profiling (solubility, permeability and charge state). Curr Top Med Chem. 2001;1(4):277–351.

    Article  CAS  PubMed  Google Scholar 

  36. Ghosh TK, Chiao CS, Gokhale RD. In-vitro permeation of some beta-blockers across the hairless mouse skin. J Pharm Pharmacol. 1993;45(3):218–9.

    Article  CAS  PubMed  Google Scholar 

  37. Miller JM, Beig A, Carr RA, Webster GK, Dahan A. The solubility-permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol Pharm. 2012;9(3):581–90.

  38. Garcia-Carbonero R, Supko JG. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res. 2002;8(3):641–61.

    CAS  PubMed  Google Scholar 

  39. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114(1):15–40.

    Article  CAS  PubMed  Google Scholar 

  40. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, et al. Coexistence of passive and carriermediated processes in drug transport. Nat Rev Drug Discov. 2010;9(8):597–614.

  41. Senel S, Hincal AA. Drug permeation enhancement via buccal route: possibilities and limitations. J Control Release. 2001;72(1–3):133–44.

    Article  CAS  PubMed  Google Scholar 

  42. Nagahara N, Tavelin S, Artursson P. Contribution of the paracellular route to the pH-dependent epithelial permeability to cationic drugs. J Pharm Sci. 2004;93(12):2972–84.

    Article  CAS  PubMed  Google Scholar 

  43. Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1–2):75–93.

  44. Qin SY, Peng MY, Rong L, Li B, Wang SB, Cheng SX, et al. Self-defensive nano-assemblies from camptothecin-based antitumor drugs. Regen Biomater. 2015;2(3)159–66.

  45. U.S. Food and Drug Administration, Silver Spring 2016. http://www.accessdata.fda.gov/drugsatfda_docs/label/2002/20571s16lbl.pdf .Accessed 19 February 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhi Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, V., Bellantone, R.A. & Taft, D.R. Evaluating the Potential for Delivery of Irinotecan via the Buccal Route: Physicochemical Characterization and In Vitro Permeation Assessment Across Porcine Buccal Mucosa. AAPS PharmSciTech 18, 867–874 (2017). https://doi.org/10.1208/s12249-016-0578-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0578-z

KEY WORDS

Navigation