Skip to main content
Log in

Rheological Characterization of Ethylcellulose-Based Melts for Pharmaceutical Applications

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Rheological characterization of ethylcellulose (EC)-based melts intended for the production, via micro-injection moulding (μIM), of oral capsular devices for prolonged release was carried out. Neat EC, plasticized EC and plasticized EC containing solid particles of a release modifier (filler volume content in the melt around 30%) were examined by capillary and rotational rheometry tests. Two release modifiers, differing in both chemical nature and particle geometry, were investigated. When studied by capillary rheometry, neat EC appeared at process temperatures as a highly viscous melt with a shear-thinning characteristic that progressively diminished as the apparent shear rate increased. Thus, EC as such could not successfully be processed via μIM. Plasticization, which induces changes in the material microstructure, enhanced the shear-thinning characteristic of the melt and reduced considerably its elastic properties. Marked wall slip effects were noticed in the capillary flow of the plasticized EC-based melts, with or without release modifier particles. The presence of these particles brought about an increase in viscosity, clearly highlighted by the dynamic experiments at the rotational rheometer. However, it did not impair the material processability. The thermal and rheological study undertaken would turn out a valid guideline for the development of polymeric materials based on pharma-grade polymers with potential for new pharmaceutical applications of μIM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Lang B, McGinity JW, Williams III RO. Hot-melt extrusion—basic principles and pharmaceutical applications. Drug Dev Ind Pharm. 2014;40:1133–55.

    Article  CAS  PubMed  Google Scholar 

  2. Repka MA, Shah S, Lu J, Maddineni S, Morott J, Patwardhan K, et al. Melt extrusion: process to product. Expert Opin Drug Deliv. 2012;9:105–25.

    Article  CAS  PubMed  Google Scholar 

  3. Zema L, Loreti G, Melocchi A, Maroni A, Gazzaniga A. Injection molding and its application to drug delivery. J Control Release. 2012;159:324–31.

    Article  CAS  PubMed  Google Scholar 

  4. Shah S, Maddineni S, Lu J, Repka MA. Melt extrusion with poorly soluble drugs. Int J Pharm. 2013;453:233–52.

    Article  CAS  PubMed  Google Scholar 

  5. Zema L, Loreti G, Melocchi A, Maroni A, Palugan L, Gazzaniga A. Gastroresistant capsular device prepared by injection molding. Int J Pharm. 2013;440:264–72.

    Article  CAS  PubMed  Google Scholar 

  6. Gazzaniga A, Cerea M, Cozzi A, Foppoli A, Maroni A, Zema L. A novel injection-molded capsular device for oral pulsatile delivery based on swellable/erodible polymers. AAPS Pharm Sci Tech. 2011;12:295–303.

    Article  CAS  Google Scholar 

  7. Claeys B, De Coen R, De Geest BG, De la Rosa VR, Hoogenboom R, Carleer R, et al. Structural modifications of polymethacrylates: impact on thermal behavior and release characteristics of glassy solid solutions. Eur J Pharm Biopharm. 2013;85:1206–14.

    Article  CAS  PubMed  Google Scholar 

  8. Aho J, Boetker JP, Baldursdottir S, Rantanen J. Rheology as a tool for evaluation of melt processability of innovative dosage forms. Int J Pharm. 2015;494:623–42.

    Article  CAS  PubMed  Google Scholar 

  9. Zema L, Loreti G, Macchi E, Foppoli A, Maroni A, Gazzaniga A. Injection-molded capsular device for oral pulsatile release: development of a novel mold. J Pharm Sci. 2013;102:489–99.

    Article  CAS  PubMed  Google Scholar 

  10. Quinten T, Gonnissenn Y, Adriaens E, De Beer T, Cnudde V, Masschaele B, et al. Development of injection moulded matrix tablets based on mixtures of ethylcellulose and lowsubstituted hydroxypropylcellulose. Eur J Pharm Sci. 2009;37:207–16.

    Article  CAS  PubMed  Google Scholar 

  11. Quinten T, De Beer T, Almeida A, Vlassenbroeck J, Van Hoorebeke L, Remon JP, et al. Development and evaluation of injection-molded sustained-release tablets containing ethylcellulose and polyethylene oxide. Drug Dev Ind Pharm. 2011;37:149–59.

    Article  CAS  PubMed  Google Scholar 

  12. Bar-Shalom D, Slot L, Wang Lee W, Wilson CG. Development of the Egalet® technology. In: Rathbone MJ, Hadgraft J, Roberts MS, editors. Modified-release drug delivery technology. New York: Marcel Dekker; 2003.

    Google Scholar 

  13. Maru SM, De Matas M, Kelly A, Paradkar A. Characterization of thermal and rheological properties of zidovidine, lamivudine and plasticizer blends with ethyl cellulose to assess their suitability for hot melt extrusion. Eur J Pharm Sci. 2011;44:471–8.

    Article  CAS  PubMed  Google Scholar 

  14. Davidivich-Pinhas M, Barbut S, Marangoni AG. Physical structure and thermal behaviour of ehtylcellulose. Cellulose. 2014;21:3243–55.

    Article  Google Scholar 

  15. Lai HL, Pitt K, Craig DQM. Characterization of the thermal properties of ethylcellulose using differential scanning and quasi-isothermal calorimetric approaches. Int J Pharm. 2010;386:178–84.

    Article  CAS  PubMed  Google Scholar 

  16. Laun HM, Schuch H. Transient elongational viscosities and drawability of polymer melts. J Rheol. 1989;33:119–75.

    Article  CAS  Google Scholar 

  17. Laun HM. Orientation effects and rheology of short glass fiber-reinforced thermoplastics. Colloid Polym Sci. 1984;262:257–69.

    Article  CAS  Google Scholar 

  18. Baldi F, Franceschini A, Bignotti F, Tieghi G, Riccò T. Rheological behaviour of nano-composites based on polyamide 6 under shear and elongational flow at high strain rates. Rheol Acta. 2009;48:73–88.

    Article  CAS  Google Scholar 

  19. Larson RG. The structure and rheology of complex fluids. New York: Oxford University Press; 1999.

    Google Scholar 

  20. Hatzikiriakos SG, Dealy JM. Role of slip and fracture in the oscillating flow of HDPE in a capillary. J Rheol. 1992;36:845–84.

    Article  CAS  Google Scholar 

  21. Piau J-M, El Kissi N, Toussaint F, Mezghani A. Distortions of polymer melt extrudates and their elimination using slippery surfaces. Rheol Acta. 1995;34:40–57.

    Article  CAS  Google Scholar 

  22. Mooney M. Explicit formulas for slip and fluidity. J Rheol. 1931;2:210–22.

    Article  CAS  Google Scholar 

  23. Hatzikiriakos SG, Dealy JM. Wall slip of molten high density polyethylenes. II. Capillary rheometer studies. J Rheol. 1992;36:703–41.

    Article  CAS  Google Scholar 

  24. Laun HM. Capillary rheometry for polymer melts revised. Rheol Acta. 2004;43:509–28.

    Article  CAS  Google Scholar 

  25. Haworth B, Khan SW. Wall slip phenomena in talc-filled polypropylene compounds. J Mater Sci. 2005;40:3325–37.

    Article  CAS  Google Scholar 

  26. Cox HW, Macosko CW. Viscous dissipation in die flows. AICHE J. 1974;20:785–95.

    Article  CAS  Google Scholar 

  27. Rosenbaum EE, Hatzikiriakos SG. Wall slip in the capillary flow of molten polymers subject to viscous heating. AICHE J. 1997;43:598–608.

    Article  CAS  Google Scholar 

  28. Baldi F, Ragnoli J, Briatico-Vangosa F. Measurement of the high rate flow properties of filled HDPE melts by capillary rheometer: effects of the test geometry. Polym Test. 2014;37:201–9.

    Article  CAS  Google Scholar 

  29. Jerman RE, Baird DG. Rheological properties of copolyester liquid crystalline melts. I. Capollary rheometer. J Rheol. 1981;25:275–92.

    Article  CAS  Google Scholar 

  30. Macosko CW. Rheology: principles, measurements and applications. New York: Wiley-VCH Inc.; 1994.

    Google Scholar 

  31. Khan SA, Prud’Homme RK. Melt rheology of filled thermoplastics. Rev Chem Eng. 1987;4:205–70.

    Article  CAS  Google Scholar 

  32. Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB. The Cox-Mertz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol. 1991;35:647–85.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to ITW Test and Measurement Italia S.r.l.—Instron CEAST Division (Pianezza, Torino, Italy) for the capillary rheometer kindly placed at authors’ disposal; Ms. I. Peroni and Ms. G. Spagnoli of Dipartimento di Ingegneria Meccanica e Industriale of Università degli Studi di Brescia (Italy) for the contribution to the preparation of the materials and for the DSC analyses kindly performed; and Ms. V. Ferrari of Dipartimento di Ingegneria Meccanica e Industriale of Università degli Studi di Brescia (Italy) for the SEM analyses kindly performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Zema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, F., Ragnoli, J., Zinesi, D. et al. Rheological Characterization of Ethylcellulose-Based Melts for Pharmaceutical Applications. AAPS PharmSciTech 18, 855–866 (2017). https://doi.org/10.1208/s12249-016-0577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0577-0

KEY WORDS

Navigation