Skip to main content
Log in

Application of Tryptophan Fluorescence Bandwidth-Maximum Plot in Analysis of Monoclonal Antibody Structure

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Monoclonal antibodies have become the fastest growing protein therapeutics in recent years. The stability and heterogeneity pertaining to its physical and chemical structures remain a big challenge. Tryptophan fluorescence has been proven to be a versatile tool to monitor protein tertiary structure. By modeling the tryptophan fluorescence emission envelope with log-normal distribution curves, the quantitative measure can be exercised for the routine characterization of monoclonal antibody overall tertiary structure. Furthermore, the log-normal deconvolution results can be presented as a two-dimensional plot with tryptophan emission bandwidth vs. emission maximum to enhance the resolution when comparing samples or as a function of applied perturbations. We demonstrate this by studying four different monoclonal antibodies, which show the distinction on emission bandwidth-maximum plot despite their similarity in overall amino acid sequences and tertiary structures. This strategy is also used to demonstrate the tertiary structure comparability between different lots manufactured for one of the monoclonal antibodies (mAb2). In addition, in the unfolding transition studies of mAb2 as a function of guanidine hydrochloride concentration, the evolution of the tertiary structure can be clearly traced in the emission bandwidth-maximum plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10:345–52.

    Article  CAS  PubMed  Google Scholar 

  2. Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15:361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elgert KD. Immunology: understanding the immune system. 2nd ed. Hoboken: John Wiley & Sons; 2009.

    Google Scholar 

  4. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.

    Article  CAS  PubMed  Google Scholar 

  5. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9:325–38.

    Article  CAS  PubMed  Google Scholar 

  6. Kayser V, Chennamsetty N, Voynov V, Helk B, Trout BL. Conformational stability and aggregation of therapeutic monoclonal antibodies studied with ANS and thioflavin T binding. mAbs. 2011;3:408–11.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yadav S, Laue TM, Kalonia DS, Singh SN, Shire SJ. The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions. Mol Pharm. 2012;9:791–802.

    Article  CAS  PubMed  Google Scholar 

  8. Abbas SA, Gaspar G, Sharma VK, Patapoff TW, Kalonia DS. Application of second-derivative fluorescence spectroscopy to monitor subtle changes in a monoclonal antibody structure. J Pharm Sci. 2013;101:52–61.

    Article  Google Scholar 

  9. Fekete S, Gassner A-L, Rudaz S, Schappler J, Guillarme D. Analytical strategies for the characterization of therapeutic monoclonal antibodies. Trends Anal Chem. 2013;42:74–83.

    Article  CAS  Google Scholar 

  10. Thakkar SV, Sahni N, Joshi SB, Kerwin BA, He F, Volkin DB, et al. Understanding the relevance of local conformational stability and dynamics to the aggregation propensity of an IgG1 and IgG2 monoclonal antibodies. Protein Sci. 2013;22:1295–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chaudhuri R, Cheng Y, Middaugh CR, Volkin DB. High-throughput biophysical analysis of protein therapeutics to examine interrelationships between aggregate formation and conformational stability. AAPS J. 2014;16:48–64.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng K, Yarmarkovich M, Bantog C, Bayer R, Patapoff TW. Influence of glycosylation pattern on the molecular properties of monoclonal antibodies. mAbs. 2014;6:649–58.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Amin S, Barnett GV, Pathak JA, Roberts CJ, Sarangapani PS. Protein aggregation, particle formation, characterization & rheology. Curr Opin Colloid Interface Sci. 2014;19:438–49.

    Article  CAS  Google Scholar 

  14. Zhang H, Cui W, Gross ML. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett. 2014;588:308–17.

    Article  CAS  PubMed  Google Scholar 

  15. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J. Heterogeneity of monoclonal antibodies. J Pharm Sci. 2008;97:2426–47.

    Article  CAS  PubMed  Google Scholar 

  16. Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer; 2006.

    Book  Google Scholar 

  17. Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res. 2008;25:1487–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eftink MR. Fluorescence techniques for studying protein structure. In: Suelter CH, editor. Methods of biochemical analysis: protein structure determination, vol. 35. New York: John Wiley & Sons; 1991. p. 127–205.

    Chapter  Google Scholar 

  19. Goto Y, Azuma T, Hamaguchi K. Refolding of the immunoglobulin light chain. J Biochem. 1979;85:1427–38.

    Article  CAS  PubMed  Google Scholar 

  20. Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG. Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc. 1981;35:271–6.

    Article  CAS  Google Scholar 

  21. Kalauzi A, Mutavdžić D, Djikanović D, Radotić K, Jeremić M. Application of asymmetric model in analysis of fluorescence spectra of biologically important molecules. J Fluoresc. 2007;17:319–29.

    Article  CAS  PubMed  Google Scholar 

  22. Bacalum M, Zorilă B, Radu M. Fluorescence spectra decomposition by asymmetric functions: Laurdan spectrum revisited. Anal Biochem. 2013;440:123–9.

    Article  CAS  PubMed  Google Scholar 

  23. Siano DB, Metzler DE. Band shapes of the electronic spectra of complex molecules. J Chem Phys. 1969;51:1856–61.

    Article  CAS  Google Scholar 

  24. Burstein EA, Emelyanenko VI. Log-normal description of fluorescence spectra of organic fluorophores. Photochem Photobiol. 1996;64:316–20.

    Article  CAS  Google Scholar 

  25. Burstein EA, Abornev SM, Reshetnyak YK. Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. decomposition algorithms. Biophys J. 2001;81:1699–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reshetnyak YK, Burstein EA. Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins. Biophys J. 2001;81:1710–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reshetnyak YK, Koshevink Y, Burstein EA. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues. Biophys J. 2001;81:1735–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garber E, Demarest SJ. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun. 2007;355:751–7.

    Article  CAS  PubMed  Google Scholar 

  29. Ladokhin AS. Fluorescence spectroscopy in peptide and protein analysis. In: Mayers RA, editor. Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons; 2000. p. 5762–79.

    Google Scholar 

  30. Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2016.

Download references

Acknowledgments

We thank Dr. Liangjie Tang and Dr. Shanmuuga Sandaram for their valuable comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Yen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CY., Hsieh, MC. & Zhou, Q. Application of Tryptophan Fluorescence Bandwidth-Maximum Plot in Analysis of Monoclonal Antibody Structure. AAPS PharmSciTech 18, 838–845 (2017). https://doi.org/10.1208/s12249-016-0568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0568-1

Keywords

Navigation