Skip to main content
Log in

Near-Infrared Spectroscopy Assay of Key Quality-Indicative Ingredients of Tongkang Tablets

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this paper is to develop an easy and fast near-infrared spectroscopy (NIRS) assay for the four key quality-indicative active ingredients of Tongkang tablets by comparing the true content of the active ingredients measured by high performance liquid chromatography (HPLC) and the NIRS data. The HPLC values for the active ingredients content of Cimicifuga glycoside, calycosin glucoside, 5-O-methylvisamminol and hesperidin in Tongkang tablets were set as reference values. The NIRS raw spectra of Tongkang tablets were processed using first-order convolution method. The iterative optimization method was chosen to optimize the band for Cimicifuga glycoside and 5-O-methylvisamminol, and correlation coefficient method was used to determine the optimal band of calycosin glucoside and hesperidin. A near-infrared quantitative calibration model was established for each quality-indicative ingredient by partial least-squares method on the basis of the contents detected by HPLC and the obtained NIRS spectra. The correlation coefficient R 2 values of the four models of Cimicifuga glycoside, calycosin glucoside, 5-O-methylvisamminol and hesperidin were 0.9025, 0.8582, 0.9250, and 0.9325, respectively. It was demonstrated that the accuracy of the validation values was approximately 90% by comparison of the predicted results from NIRS models and the HPLC true values, which suggested that NIRS assay was successfully established and validated. It was expected that the quantitative analysis models of the four indicative ingredients could be used to rapidly perform quality control in industrial production of Tongkang tablets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang JY, Wang YZ, Zhao YL, Yang SB, Zuo ZT, Yang MQ, et al. Phytochemicals and bioactivities of Paris species. J Asian Nat Prod Res. 2011;13(7):670–81.

    Article  CAS  Google Scholar 

  2. Ma Y, Zhang QW, Wang ZM, Gao HM. Advance in study on compound Kushen injection. Chin J Exp Tradit Med Formul. 2012;23:101.

    Google Scholar 

  3. Lin C, Chen X, Jian L, Shi C, Jin X, Zhang G. Determination of grain protein content by near-infrared spectrometry and multivariate calibration in barley. Food Chem. 2014;162:10–5.

    Article  CAS  PubMed  Google Scholar 

  4. Wu ZS, Zhou LW, DAI SY, Shi XY, Qiao YJ. Evaluation of the value of near infrared (NIR) spectromicroscopy for the analysis of glycyrrizhic acid in licorice. Chin J Nat Med. 2015;13(4):316–20.

    CAS  PubMed  Google Scholar 

  5. Wang D, Zhao L. Comparative research on the NIR and MIR micro-imaging of two similar plastic materials. Spectrosc Spect Anal. 2011;31(9):2377–82.

    CAS  Google Scholar 

  6. Ravn C, Skibsted E, Bro R. Near-infrared chemical imaging (NIR-CI) on pharmaceutical solid dosage forms—comparing common calibration approaches. J Pharm Biomed Anal. 2008;48(3):554–61.

    Article  CAS  PubMed  Google Scholar 

  7. Wu Z, Tao O, Cheng W, Yu L, Shi X, Qiao Y. Visualizing excipient composition and homogeneity of compound liquorice tablets by near-infrared chemical imaging. Spectrochim Acta A Mol Biomol Spectrosc. 2012;86:631–6.

    Article  CAS  PubMed  Google Scholar 

  8. Li W, Han H, Zhang L, Zhang Y, Qu H. A feasibility study on the non-invasive analysis of bottled Compound E Jiao oral liquid using near infrared spectroscopy. Sensors Actuators B Chem. 2015;211:131–7.

    Article  CAS  Google Scholar 

  9. Wang Y, Mei M, Ni Y, Kokot S. Combined NIR/MIR analysis: a novel method for the classification of complex substances such as Illicium verum Hook. F. and its adulterants. Spectrochim Acta A Mol Biomol Spectrosc. 2014;130:539–45.

    Article  CAS  PubMed  Google Scholar 

  10. Woo YA, Cho CH, Kim HJ, Yang JS, Seong KY. Classification of cultivation area of ginseng by near infrared spectroscopy and ICP-AES. Microchem J. 2002;73(3):299–306.

    Article  CAS  Google Scholar 

  11. Li W, Xing L, Fang L, Wang J, Qu H. Application of near infrared spectroscopy for rapid analysis of intermediates of Tanreqing injection. J Pharm Biomed Anal. 2010;53(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  12. Mohri Y, Sakata Y, Otsuka M. Quantitative evaluation of glycyrrhizic acid that affects the product quality of Kakkonto extract, a traditional herbal medicine, by a chemometric near infrared spectroscopic method. J Near Infrared Spectrosc. 2009;17(2):89.

    Article  CAS  Google Scholar 

  13. Blanco M, Eustaquio A, Gonzalez J, Serrano D. Identification and quantitation assays for intact tablets of two related pharmaceutical preparations by reflectance near-infrared spectroscopy: validation of the procedure. J Pharm Biomed Anal. 2000;22(1):139–48.

    Article  CAS  PubMed  Google Scholar 

  14. Cozzolino D, Kwiatkowski M, Parker M, Cynkar W, Dambergs R, Gishen M, et al. Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy. Anal Chim Acta. 2004;513(1):73–80.

    Article  CAS  Google Scholar 

  15. Yan YL, Zhao LL, Han DH, Yang S. The foundation and application of near infrared spectroscopy analysis. Beijing: China Light Industry Press; 2005. p. 3–7.

    Google Scholar 

  16. Rummel S, Hoelzl S, Horn P, Rossmann A, Schlicht C. The combination of stable isotope abundance ratios of H, C, N and S with 87 Sr/86 Sr for geographical origin assignment of orange juices. Food Chem. 2010;118(4):890–900.

    Article  CAS  Google Scholar 

  17. Dalvit C, De Marchi M, Targhetta C, Gervaso M, Cassandro M. Genetic traceability of meat using microsatellite markers. Food Res Int. 2008;41(3):301–7.

    Article  CAS  Google Scholar 

  18. Committee CP. Chinese pharmacopoeia. Beijing: China Medica Science Press; 2010. p. 276.

    Google Scholar 

  19. Rainsford TJ, Mickan SP, Abbott D. T-ray sensing applications: review of global developments. Smart Materials, Nano-, and Micro-Smart Systems: International Society for Optics and Photonics. 2005

  20. Yu K, Hu CC, Cheng YY. A novel method for fast determination of three active components in Compound Danshen Dropping Pills by near infrared spectroscopy. Chin Pharm J. 2006;41(3):226.

    CAS  Google Scholar 

  21. Qu HB, Liu Q, Cheng YY. Determination of the coptis extract alkaloids using near-infrared diffuse reflectance spectroscopy. Chin J Anal Chem. 2004;32(4):477–80.

    CAS  Google Scholar 

  22. Lu JH, Wu D, Zhang T, Jiang CJ, Guo WL, Teng LR. Rapid determination of rifampicin capsules using near infrared diffuse reflectance spectroscopy. Chin J Hosp Pharm. 2006;26(4):380.

    CAS  Google Scholar 

  23. Thompson WG, Longstreth G, Drossman D, Heaton K, Irvine E, Müller-Lissner S. Functional bowel disorders and functional abdominal pain. Gut. 1999;45 suppl 2:II43–7.

    PubMed  PubMed Central  Google Scholar 

  24. Shi GL, Ye FL. The math model and evaluation of NIRDRS method on analysis of Chinese traditional medicine. Lishizhen Med Mater Med Res. 2007;1:64.

    Google Scholar 

  25. Lu JH, Lv X, Wang YX, Jiang CJ, Guo WL, Teng LR. Nondestructive and quantitative analysis of isoniazid tablets by near infrared spectroscopy with PLS regression. J Jilin Univ (Sci Ed). 2006;44(3):485–8.

    CAS  Google Scholar 

  26. Chen H. HPLC-ELSD determination of astragaloside IV in Radix Astragali and its preparations. Chin J Pharm Anal. 2007;27(3):426–9.

    CAS  Google Scholar 

  27. Shi JL, Shan Y, Zhang ZQ, Lai JY, Li YH. HPLC simultaneous determination of quercetin, kaempferol and biochanin B in Astragalus membranaceus (Fisch.) Bunge. Chin J Pharm Anal. 2010;1:40.

    Google Scholar 

  28. Li Y, Qin XM, Guo XQ, Zhang L. Diversity studies on the content of Astragaloside IV of radix Astragali in different place. Mod Chin Med. 2007;9:006.

    Google Scholar 

  29. Jones R. Citrus peel processing system and method. USA patent: US20060188621A1. 2006.

  30. Boulesteix AL. PLS dimension reduction for classification with microarray data. Stat Appl Genet Mol. 2004;3(1):1–30.

    Google Scholar 

  31. Liu X, Wu Z, Yang K, Ding H, Wu Y. Quantitative analysis combined with chromatographic fingerprint for comprehensive evaluation of Danhong injection using HPLC-DAD. J Pharm Biomed Anal. 2013;76:70–4.

    Article  CAS  PubMed  Google Scholar 

  32. Lu J, Xiang B, Liu H, Xiang S, Xie S, Deng H. Application of two-dimensional near-infrared correlation spectroscopy to the discrimination of Chinese herbal medicine of different geographic regions. Spectrochim Acta A Mol Biomol Spectrosc. 2008;69(2):580–6.

    Article  PubMed  Google Scholar 

  33. Joubert E, Manley M, Botha M. Use of NIRS for quantification of mangiferin and hesperidin contents of dried green honeybush (Cyclopia genistoides) plant material. J Agric Food Chem. 2006;54(15):5279–83. doi:10.1021/jf060617l.

    Article  CAS  PubMed  Google Scholar 

  34. Sivakesava S, Irudayaraj J. Rapid determination of tetracycline in milk by FT-MIR and FT-NIR spectroscopy. J Dairy Sci. 2002;85(3):487–93. doi:10.3168/jds.S0022-0302(02)74099-X.

    Article  CAS  PubMed  Google Scholar 

  35. Tamburini E, Vaccari G, Tosi S, Trilli A. Near-infrared spectroscopy: a tool for monitoring submerged fermentation processes using an immersion optical-fiber probe. Appl Spectrosc. 2003;57(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  36. Chu X. Chemometrics methods and molecular spectroscopy analysis technology. Chemical Industry Press; 2011.

  37. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal. 2007;44(3):683–700.

    Article  CAS  PubMed  Google Scholar 

  38. Wu Z, Tao O, Dai X, Du M, Shi X, Qiao Y. Monitoring of a pharmaceutical blending process using near infrared chemical imaging. Vib Spectrosc. 2012;63:371–9. doi:10.1016/j.vibspec.2012.09.001.

    Article  CAS  Google Scholar 

  39. Kim EH, Shim B, Kang S, Jeong G, Lee JS, Yu YB, et al. Anti-inflammatory effects of Scutellaria baicalensis extract via suppression of immune modulators and MAP kinase signaling molecules. J Ethnopharmacol. 2009;126(2):320–31. doi:10.1016/j.jep.2009.08.027.

    Article  PubMed  Google Scholar 

  40. Chen Y, Xie MY, Yan Y, Zhu SB, Nie SP, Li C, et al. Discrimination of Ganoderma lucidum according to geographical origin with near infrared diffuse reflectance spectroscopy and pattern recognition techniques. Anal Chim Acta. 2008;618(2):121–30.

    Article  CAS  PubMed  Google Scholar 

  41. Xiong H, Gong X, Qu H. Monitoring batch-to-batch reproducibility of liquid-liquid extraction process using in-line near-infrared spectroscopy combined with multivariate analysis. J Pharm Biomed Anal. 2012;70:178–87.

    Article  CAS  PubMed  Google Scholar 

  42. He Y, Li X, Deng X. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model. J Food Eng. 2007;79(4):1238–42.

    Article  Google Scholar 

  43. Mendez ASL, de Carli G, Garcia CV. Evaluation of powder mixing operation during batch production: application to operational qualification procedure in the pharmaceutical industry. Powder Technol. 2010;198(2):310–3. doi:10.1016/j.powtec.2009.11.027.

    Article  CAS  Google Scholar 

  44. Lu W. The near infrared spectral analysis technology. China Petrochemical Press. 2007.

  45. Leion H, Folestad S, Josefson M, Sparen A. Evaluation of basic algorithms for transferring quantitative multivariate calibrations between scanning grating and FT NIR spectrometers. J Pharm Biomed Anal. 2005;37(1):47–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by China Specialized Research Fund for the Doctoral Program of Higher Education (20120171120046) and Pearl River S&T Nova Program of Guangzhou (1317000297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fahuan Ge or Xin Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Ma, J., Xiao, X. et al. Near-Infrared Spectroscopy Assay of Key Quality-Indicative Ingredients of Tongkang Tablets. AAPS PharmSciTech 18, 913–919 (2017). https://doi.org/10.1208/s12249-016-0562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0562-7

Keywords

Navigation