Skip to main content

Advertisement

Log in

Lipid- and Polymer-Based Nanostructures for Cutaneous Delivery of Curcumin

  • Rapid Communication
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

It is well-known that nanoencapsulation may overcome biopharmaceutical limitations of curcumin (CUR), but studies regarding the contribution of the vesicular nature of CUR-loaded nanoparticles on skin permeation are still scarce. Therefore, the effect of three colloidal systems (solid lipid nanoparticles (SLN), nanoemulsion (NE), and polymeric nanoparticles (NP)) on the control of cutaneous permeation of CUR was investigated in porcine ear skin/Franz diffusion cells. Colloidal suspensions were designed to present a similar particle size (±170 nm), narrow size distribution (PdI < 0.2), and high entrapment efficiency (>99%). Zeta potential values were −0.13, −9.68 and −36.7 mV for the CUR-loaded NP, SLN and NE, respectively. Nanoencapsulation resulted in a cumulative amount of CUR in the more superficial layers of the skin. NP significantly enhanced the compound retention in the epidermis, which was approximately 2.49- and 3.32-fold more than SLN and NE, respectively. The CUR levels into the dermis were significantly increased after treatment with NE, which may be associated with repulsion phenomena in surface skin. Therefore, a more superficial or deeper action of CUR on the skin may be obtained depending on nanostructure type. While NPs are more effective in upper skin layers, NE should be prioritized when a dermal action for the CUR is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, et al. Biological activities of curcumin and its analogues (congeners) made by man and Mother Nature. Biochem Pharmacol. 2008;76(11):1590–611. doi:10.1016/j.bcp.2008.08.008.

    Article  CAS  PubMed  Google Scholar 

  2. Balaji S, Chempakam B. Toxicity prediction of compounds from turmeric (Curcuma longa L). Food Chem Toxicol. 2010;48(10):2951–9. doi:10.1016/j.fct.2010.07.032.

    Article  CAS  PubMed  Google Scholar 

  3. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(4):353–6. doi:10.1055/s-2006-957450.

    Article  CAS  PubMed  Google Scholar 

  4. Rachmawati H, Edityaningrum CA, Mauludin R. Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech. 2013;14(4):1303–12. doi:10.1208/s12249-013-0023-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18. doi:10.1021/mp700113r.

    Article  CAS  PubMed  Google Scholar 

  6. Kurita T, Makino Y. Novel curcumin oral delivery systems. Anticancer Res. 2013;33(7):2807–21.

    CAS  PubMed  Google Scholar 

  7. Fang JY, Hung CF, Chiu HC, Wang JJ, Chan TF. Efficacy and irritancy of enhancers on the in vitro and in vivo percutaneous absorption of curcumin. J Pharm Pharmacol. 2003;55(8):1175. doi:10.1111/j.2042-7158.2003.tb02748.x.

    Article  CAS  PubMed  Google Scholar 

  8. Mazzarino L, Travelet C, Ortega-Murillo S, Otsuka I, Pignot-Paintrand I, Lemos-Senna E, et al. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci. 2012;370(1):58–66. doi:10.1016/j.jcis.2011.12.063.

    Article  CAS  PubMed  Google Scholar 

  9. Sintov AC. Transdermal delivery of curcumin via microemulsion. Int J Pharm. 2015;481(1-2):97–103. doi:10.1016/j.ijpharm.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  10. Caon T, Porto LC, Granada A, Tagliari MP, Silva MAS, Simões CMO, et al. Chitosan-decorated polystyrene-b-poly(acrylic acid) polymersomes as novel carriers for topical delivery of finasteride. Eur J Pharm Sci. 2014;52:165–72. doi:10.1016/j.ejps.2013.11.008.

    Article  CAS  PubMed  Google Scholar 

  11. Caon T, Campos CE, Simoes CM, Silva MA. Novel perspectives in the tuberculosis treatment: administration of isoniazid through the skin. Int J Pharm. 2015;494(1):463–70. doi:10.1016/j.ijpharm.2015.08.067.

    Article  CAS  PubMed  Google Scholar 

  12. Beck R, Guterres S, Pohlmann A. Nanocosmetics and nanomedicines: new approaches for skin care. Springer: Berlin Heidelberg; 2011.

    Book  Google Scholar 

  13. Bouchemal K, Briançon S, Perrier E, Fessi H. Nanoemulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280(1–2):241–51. doi:10.1016/j.ijpharm.2004.05.016.

    Article  CAS  PubMed  Google Scholar 

  14. Dora CL, Silva LFC, Tagliari MP, Silva MAS, Lemos-Senna E. Formulation study of quercetin-loaded lipid-based nanocarriers obtained by hot solvent diffusion method. Lat Am J Pharm. 2011;30(2):289–96.

    CAS  Google Scholar 

  15. Baskaran R, Madheswaran T, Sundaramoorthy P, Kim HM, Yoo BK. Entrapment of curcumin into monoolein-based liquid crystalline nanoparticle dispersion for enhancement of stability and anticancer activity. Int J Nanomedicine. 2014;9:3119–30. doi:10.2147/ijn.s61823.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Patra S, Roy E, Madhuri R, Sharma PK. The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin. Biomater Sci. 2016;4(3):418–29. doi:10.1039/c5bm00433k.

    Article  CAS  PubMed  Google Scholar 

  17. Ostertag F, Weiss J, McClements DJ. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. J Colloid Interface Sci. 2012;388(1):95–102. doi:10.1016/j.jcis.2012.07.089.

    Article  CAS  PubMed  Google Scholar 

  18. Wei C-C, Ge Z-Q. Influence of electrolyte and poloxamer 188 on the aggregation kinetics of solid lipid nanoparticles (SLNs). Drug Dev Ind Pharm. 2012;38(9):1084–9. doi:10.3109/03639045.2011.640331.

    Article  CAS  PubMed  Google Scholar 

  19. Grynkiewicz G, Ślifirski P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochim Pol. 2012;59(2):201–12.

    CAS  PubMed  Google Scholar 

  20. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15(12):1867–76. doi:10.1016/s0731-7085(96)02024-9.

    Article  CAS  PubMed  Google Scholar 

  21. Benson HAE. Transdermal drug delivery: penetration enhancement techniques. Current drug delivery. Curr Drug Deliv. 2005;2(1):23–33. doi:10.2174/1567201052772915.

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules. 2012;17(5):5972–87. doi:10.3390/molecules17055972.

    Article  CAS  PubMed  Google Scholar 

  23. Zamarioli CM, Martins RM, Carvalho EC, Freitas LAP. Nanoparticles containing curcuminoids (Curcuma longa): development of topical delivery formulation. Rev Bras Farmacogn. 2015;25:53–60. doi:10.1016/j.bjp.2014.11.010.

    Article  CAS  Google Scholar 

  24. Mazzarino L, Dora CL, Bellettini IC, Minatti E, Cardoso SG, Lemos-Senna E. Curcumin-loaded polymeric and lipid nanocapsules: preparation, characterization and chemical stability evaluation. Lat Am J Pharm. 2010;29(6):933–40.

    CAS  Google Scholar 

  25. Paolino D, Ventura CA, Nisticò S, Puglisi G, Fresta M. Lecithin microemulsions for the topical administration of ketoprofen: percutaneous adsorption through human skin and in vivo human skin tolerability. Int J Pharm. 2002;244(1-2):21–31. doi:10.1016/s0378-5173(02)00295-8.

    Article  CAS  PubMed  Google Scholar 

  26. Tavano L, Muzzalupo R, Picci N, de Cindio B. Co-encapsulation of lipophilic antioxidants into niosomal carriers: percutaneous permeation studies for cosmeceutical applications. Colloids Surf B: Biointerfaces. 2014;114:144–9. doi:10.1016/j.colsurfb.2013.09.055.

    Article  CAS  PubMed  Google Scholar 

  27. Watkinson AC, Bunge AL, Hadgraft J, Lane ME. Nanoparticles do not penetrate human skin—a theoretical perspective. Pharm Res. 2013;30(8):1943–6. doi:10.1007/s11095-013-1073-9.

    Article  CAS  PubMed  Google Scholar 

  28. Pathak Y, Thassu D. Drug delivery nanoparticles formulation and characterization. Taylor & Francis; 2009.

  29. Hoeller S, Sperger A, Valenta C. Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm. 2009;370(1–2):181–6. doi:10.1016/j.ijpharm.2008.11.014.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou H, Yue Y, Liu G, Li Y, Zhang J, Gong Q, et al. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Res Lett. 2010;5(1):224–30. doi:10.1007/s11671-009-9469-5.

    Article  CAS  Google Scholar 

  31. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res. 2004;21(10):1818–25. doi:10.1023/B:PHAM.0000045235.86197.ef.

    Article  CAS  PubMed  Google Scholar 

  32. Ourique AF, Melero A, de Bona da Silva C, Schaefer UF, Pohlmann AR, Guterres SS, et al. Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur J Pharm Biopharm. 2011;79:95–101. doi:10.1016/j.ejpb.2011.03.008.

    Article  CAS  PubMed  Google Scholar 

  33. Alves MP, Scarrone AL, Santos M, Pohlmann AR, Guterres SS. Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. Int J Pharm. 2007;341(1–2):215–20. doi:10.1016/j.ijpharm.2007.03.031.

    Article  CAS  PubMed  Google Scholar 

  34. Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158(1):15–33. doi:10.1016/j.jconrel.2011.09.064.

    Article  CAS  PubMed  Google Scholar 

  35. Cai EZ, Teo EY, Jing L, Koh YP, Qian TS, Wen F, et al. Bio-conjugated polycaprolactone membranes: a novel wound dressing. Arch Plast Surg. 2014;41(6):638–46. doi:10.5999/aps.2014.41.6.638.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chakrapani VY, Gnanamani A, Giridev VR, Madhusoothanan M, Sekaran G. Electrospinning of type I collagen and PCL nanofibers using acetic acid. J Appl Polym Sci. 2012;125(4):3221–7. doi:10.1002/app.36504.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge CNPq/MCTI and CAPES/MEC (PNPD fellowship–001/2010) for the financial support. The authors are also grateful to the Laboratório Multiusuário de Estudos em Biologia (LAMEB/UFSC) for its technical assistance for the microscopic analyses and to the Mind the Graph team for granting us free access to its database, which was used to prepare the Graphical Abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Caon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caon, T., Mazzarino, L., Simões, C.M.O. et al. Lipid- and Polymer-Based Nanostructures for Cutaneous Delivery of Curcumin. AAPS PharmSciTech 18, 920–925 (2017). https://doi.org/10.1208/s12249-016-0554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0554-7

KEY WORDS

Navigation