Skip to main content
Log in

Surface-Modified Liposomal Formulation of Amphotericin B: In vitro Evaluation of Potential Against Visceral Leishmaniasis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Surface modification of liposomes with targeting ligands is known to improve the efficacy with reduced untoward effects in treating infective diseases like visceral leishmaniasis (VL). In the present study, modified ligand (ML), designed by modifying polysaccharide with a long chain lipid was incorporated in liposomes with the objective to target amphotericin B (Amp B) to reticuloendothelial system and macrophages. Conventional liposomes (CL) and surface modified liposomes (SML) were characterized for size, shape, and entrapment efficiency (E.E.). Amp B SML with 3% w/w of ML retained the vesicular nature with particle size of ∼205 nm, E.E. of ∼95% and good stability. SML showed increased cellular uptake in RAW 264.7 cells which could be attributed to receptor-mediated endocytosis. Compared to Amp B solution, Amp B liposomes exhibited tenfold increased safety in vitro in RAW 264.7 and J774A.1 cell lines. Pharmacokinetics and biodistribution studies revealed high t 1/2, area under the curve (AUC)0–24, reduced clearance and prolonged retention in liver and spleen with Amp B SML compared to other formulations. In promastigote and amastigote models, Amp B SML showed enhanced performance with low 50% inhibitory concentration (IC50) compared to Amp B solution and Amp B CL. Thus, due to the targeting ability of ML, SML has the potential to achieve enhanced efficacy in treating VL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shakya N, Sane SA, Haq W. Augmentation of anti-leishmanial efficacy of miltefosine in combination with tuftsin against experimental visceral leishmaniasis. Parasitol Res. 2012;111(2):563–70.

    Article  PubMed  Google Scholar 

  2. Maltezou HC. Leishmaniasis. In: Maltezou HC, Gikas A, editors. Tropical and emerging infectious diseases. Kerala: Research Signpost; 2010. p. 163–85.

    Google Scholar 

  3. Croft SL, Coombs GH. Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19(11):502–8.

    Article  CAS  PubMed  Google Scholar 

  4. Molavi O, Xiong X, Douglas D, Kneteman N, Nagata S, Pastan I, et al. Anti-CD30 antibody conjugated liposomal doxorubicin with significantly improved therapeutic efficacy against anaplastic large cell lymphoma. Biomaterials. 2013;34(34):8718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joo K, Xiao L, Liu S, Liu Y, Lee C, Conti PS, et al. Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials. 2013;34(12):3098–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1–3):151–70.

    Article  CAS  PubMed  Google Scholar 

  7. Vyas SP, Katare YK, Mishra V, Sihorkar V. Ligand directed macrophage targeting of amphotericin B loaded liposomes. Int J Pharm. 2000;210(1–2):1–14.

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Deng Y, Xu H, Wu H, Qiu Y, Chen D. Synthesis of a novel galactosylated lipid and its application to the hepatocyte-selective targeting of liposomal doxorubicin. Eur J Pharm Biopharm. 2006;62(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi Y, Nishikawa M, Kawakami S, Yamashita F, Hashida M. Uptake characteristics of mannosylated and fucosylated bovine serum albumin in primary cultured rat sinusoidal endothelial cells and kupffer cells. Int J Pharm. 2004;287(1–2):147–54.

    Article  CAS  PubMed  Google Scholar 

  10. Harris N, Super M, Rits M, Chang G, Ezekowitz RA. Characterization of murine macrophage mannose receptor: demonstration that the downregulation of receptor expression mediated by interferon-gamma occurs at the level of transcription. Blood. 1992;80(9):2363–73.

    CAS  PubMed  Google Scholar 

  11. Blystone SD, Weston LK, Kaplan JE. Fibronectin dependent macrophage fibrin binding. Blood. 1991;78(11):2900–7.

    CAS  PubMed  Google Scholar 

  12. Ehrenfreund-Kleinman T, Azzam T, Falk R, Polacheck I, Golenser J, Domb AJ. Synthesis and characterization of novel water soluble amphotericin B–arabinogalactan conjugates. Biomaterials. 2002;23(5):1327–35.

    Article  CAS  PubMed  Google Scholar 

  13. Yardley V, Croft SL. In vitro and in vivo activity of amphotericin B lipid formulations against experimental Trypanosoma cruzi infections. Am J Trop Med Hyg. 1999;61(2):193–7.

    CAS  PubMed  Google Scholar 

  14. Corware KD, Rogers M, Teo I, Muller I, Shaunak S. An amphotericin B-based drug for treating experimental Leishmania major infection. Trans R Soc Trop Med Hyg. 2010;104(11):749–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lepenies B, Lee J, Sonkaria S. Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv Drug Deliv Rev. 2013;65(9):1271–81.

    Article  CAS  PubMed  Google Scholar 

  16. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.

    CAS  PubMed  Google Scholar 

  17. Mauk MR, Gamble RC, Baldeschwieler JD. Targeting of lipid vesicles: specificity of carbohydrate receptor analogues for leucocytes in mice. Proc Natl Acad Sci U S A. 1980;77(8):4430–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawakami S, Sato A, Nishikawa M, Yamashita F, Hashida M. Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther. 2000;7(4):292–9.

    Article  CAS  PubMed  Google Scholar 

  19. Salomonsen T, Jensen HM, Larsen FH, Steuernagel S, Engelsen SB. Direct quantification of M/G ratio from 13C CP-MAS NMR spectra of alginate powders by multivariate curve resolution. Carbohydr Res. 2009;344(15):2014–22.

    Article  CAS  PubMed  Google Scholar 

  20. Jadhav MP, Nagarsenker MS, Gaikwad RV, Samad A, Kshirsagar NA. Formulation and evaluation of long circulating liposomal amphotericin B: a scinti-kinetic study using Tc in BALB/C mice. Indian J Pharm Sci. 2011;73(1):57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pathak PO. Design, optimization and evaluation of novel lipid based particulate carriers for chemotherapeutic agents. Dissertation, 2012; Mumbai University.

  22. Singodia D, Verma A, Verma RK, Mishra PR. Investigations into an alternate approach to target mannose receptors on macrophages using 4-sulphated N-acetyl galactosamine more efficiently in comparison with mannose decorated liposomes: an application in drug delivery. Nanomedicine. 2012;8(4):468–77.

    CAS  PubMed  Google Scholar 

  23. Skehan P, Storeng P, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107–12.

    Article  CAS  PubMed  Google Scholar 

  24. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112–6.

    Article  CAS  PubMed  Google Scholar 

  25. Fielding RM, Smith PC, Wang LH, Porter J, Guo LS. Comparative pharmacokinetics of amphotericin B after administration of a novel colloidal delivery system, ABCD, and a conventional formulation to rats. Antimicrob Agents Chemother. 1991;35(6):1208–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Italia JL, Singh D, Ravi Kumar MNV. High-performance liquid chromatographic analysis of amphotericin B in rat plasma using α- naphthol as an internal standard. Anal Chim Acta. 2009;634(1):110–4.

    Article  CAS  PubMed  Google Scholar 

  27. Sereno D, Lemesre JL. Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrob Agents Chemother. 1997;41(5):972–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shukla AK, Patra S, Dubey VK. Evaluation of selected antitumor agents as subversive substrate and potential inhibitor of trypanothione reductase: an alternative approach for chemotherapy of Leishmaniasis. Mol Cell Biochem. 2011;352(1–2):261–70.

    Article  CAS  PubMed  Google Scholar 

  29. Davis BG, Robinson MA. Drug delivery systems based on sugar-macromolecule conjugates. Curr Opin Drug Discov Devel. 2002;5(2):279–88.

    CAS  PubMed  Google Scholar 

  30. Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):505–21.

    Article  CAS  PubMed  Google Scholar 

  31. Horowitz AT, Barenholz Y, Gabizon AA. In vitro cytotoxicity of liposome encapsulated doxorubicin: dependence on liposome composition and drug release. Biochim Biophys Acta. 1992;1109(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  32. Carrion C, de Madariaga MA, Domingo JC. In vitro cytotoxic study of immunoliposomal doxorubicin targeted to human CD34(+) leukemic cells. Life Sci. 2004;75(3):313–28.

    Article  CAS  PubMed  Google Scholar 

  33. Jain JP, Kumar N. Development of amphotericin B loaded polymersomes based on (PEG)3-PLA co-polymers: factors affecting size and in vitro evaluation. Eur J Pharm Sci. 2010;40(5):456–65.

    Article  CAS  PubMed  Google Scholar 

  34. Alexander J, Satoskar AR, Russell DG. Leishmania species: models of intracellular parasitism. J Cell Sci. 1999;112(18):2993–3002.

    CAS  PubMed  Google Scholar 

  35. Banerjee A, Roychoudhury J, Ali N. Stearylamine bearing cationic liposomes kill Leishmania parasites through surface exposed negatively charged phosphatidylserine. J Antimicrob Chemother. 2008;61(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  36. Bolard J, Legrand P, Heitz F, Cybulska B. One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry. 1991;30(23):5707–15.

    Article  CAS  PubMed  Google Scholar 

  37. Espada R, Valdespina S, Alfonso C, Rivas G, Ballesteros MP, Torrado JJ. Effect of aggregation state on the toxicity of different amphotericin B preparations. Int J Pharm. 2008;361(1–2):64–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pain D, Das PK, Ghosh P, Bachhawat BK. Increased circulatory half-life of liposomes after conjugation with dextran. J Biosci. 1984;6(6):811–6.

    Article  CAS  Google Scholar 

  39. Melton RG, Wiblin CN, Foster RL, Sherwood RF. Covalent linkage of carboxypeptidase G2 to soluble dextrans—I. Properties of conjugates and effects on plasma persistance in mice. Biochem Pharmacol. 1987;36(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  40. Melton RG, Wiblin CN, Baskerville A, Foster RL, Sherwood RF. Covalent linkage of carboxypeptidase G2 to soluble dextrans—I. In vivo distribution and fate of conjugates. Biochem Pharmacol. 1987;36(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  41. Wileman TE. Properties of asparaginase-dextran conjugates. Adv Drug Deliv Rev. 1991;6(2):167–80.

    Article  CAS  Google Scholar 

  42. Kang EC, Akiyoshi K, Sunamoto J. Surface coating of liposomes with hydrophobized polysaccharides. J Bioact Compat Polym. 1997;12(1):14–26.

    Google Scholar 

  43. Gershkovich P, Wasan EL, Lin M, Sivak O, Leon CG, Clement JG, et al. Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. J Antimicrob Chemother. 2009;64(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  44. Wasan KM, Mortan RE, Rosenblum MG, Lopez-Berestein G. Decreased toxicity of liposomal amphotericin B due to association of amphotericin B with high density lipoproteins: role of lipid transfer protein. J Pharm Sci. 1994;83(7):1006–10.

    Article  CAS  PubMed  Google Scholar 

  45. Khan MA, Owais M. Toxicity, stability and pharmacokinetics of amphotericin B in immunomodulator tuftsin-bearing liposomes in a murine model. J Antimicrob Chemother. 2006;58(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  46. Echevarria I, Barturen C, Renedo MJ, Troconiz IF, Carmen Dios-Vieitez M. Comparative pharmacokinetics, tissue distributions and effects on renal function of novel polymeric formulations of amphotericin B and amphotericin B deoxycholate in rats. Antimicrob Agents Chemother. 2000;44(4):898–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bekersky I, Boswell GW, Hiles R, Fielding RM, Buell D, Walsh TJ. Safety, toxicokinetics, and tissue distribution of long-term intravenous liposomal amphotericin B (AmBisome): a 91-day study in rats. Pharm Res. 2000;17(12):1494–502.

    Article  CAS  PubMed  Google Scholar 

  48. Fielding RM, Mukwaya G, Sandhaus RA. Clinical and preclinical studies with low-clearance liposomal amikacin (MiKasome). In: Woodle MC, Storm G, editors. Long-circulating liposomes: old drugs, new therapeutics. Georgetown: Springer-Verlag and Landes Bioscience; 1998. p. 213–25.

    Chapter  Google Scholar 

  49. Patel HM, Moghimi SM. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system—the concept of tissue specificity. Adv Drug Deliv Rev. 1998;32(1–2):45–60.

    CAS  PubMed  Google Scholar 

  50. Dey T, Anam K, Afrin F, Ali N. Antileishmanial activities of stearylamine bearing liposomes. Antimicrob Agents Chemother. 2000;44(6):1739–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by the fellowship grant from University Grant Commission, Delhi, India. The authors would also like to thank Jaslok Hospital, Mumbai, India, for TEM analysis of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangal S. Nagarsenker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patere, S.N., Pathak, P.O., Kumar Shukla, A. et al. Surface-Modified Liposomal Formulation of Amphotericin B: In vitro Evaluation of Potential Against Visceral Leishmaniasis. AAPS PharmSciTech 18, 710–720 (2017). https://doi.org/10.1208/s12249-016-0553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0553-8

KEY WORDS

Navigation