Skip to main content
Log in

Clinically Relevant In Vitro Testing of Orally Inhaled Products—Bridging the Gap Between the Lab and the Patient

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Current pharmacopeial methods for in vitro orally inhaled product (OIP) performance testing were developed primarily to support requirements for drug product registration and quality control. In addition, separate clinical studies are undertaken in order to quantify safety and efficacy in the hands of the patient. However, both laboratory and clinical studies are time-consuming and expensive and generally do not investigate either the effects of misuse or the severity of the respiratory disease being treated. The following modifications to laboratory evaluation methodologies can be incorporated without difficulty to provide a better linkage from in vitro testing to clinical reality: (1) examine all types of OIP with patient-representative breathing profiles which represent normal inhaler operation in accordance with the instructions for use (IFU); (2) evaluate OIP misuse, prioritizing the importance of such testing on the basis of (a) probability of occurrence and (b) consequential impact in terms of drug delivery in accordance with the label claim; and (3) use age-appropriate patient-simulated face and upper airway models for the evaluation of OIPs with a facemask. Although it is not necessarily foreseen that these suggestions would form part of future routine quality control testing of inhalers, they should provide a closer approximation to the clinical setting and therefore be useful in the preparation for in vivo studies and in improving guidance for correct use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tougas TP, Christopher D, Mitchell JP, Strickland H, Wyka B, Van Oort M, et al. Improved quality control metrics for cascade impaction measurements of orally inhaled drug products (OIPs). AAPS PharmSciTech. 2009;10(4):1276–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. United States Food and Drug Administration. Center for Drug Evaluation and Research (CDER): draft guidance for industry metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products chemistry, manufacturing, and controls documentation. 1998. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070573.pdf. Accessed 10 Oct 2015.

  3. Health Canada: Pharmaceutical quality of inhalation and nasal products. 2006. http://www.hc-sc.gc.ca/dhp-mps/prodpharma/applic-demande/guide-ld/chem/inhalationnas_e.html. Accessed 10 Oct 2015.

  4. European Medicines Agency: 2006 EMEA/CHMP/QWP/49313/2005 Corr. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003568.pdf. Accessed 10 Oct 2015.

  5. US Pharmacopeial Convention: United States Pharmacopeia 38/National Formulary 33, Chapter <601> Aerosols, nasal sprays, metered-dose inhalers, and dry powder inhalers. Rockville, MD, 2015.

  6. European Directorate for Quality in Medicines (EDQM): European pharmacopeia 8.0, monograph 2.9.18. Preparations for inhalations: aerodynamic assessment of fine particles. Strasburg, France EDQM 2014 (January).

  7. Mitchell JP, Nagel MW. Improved laboratory test methods for orally inhaled products. Ther Deliv. 2013;4(8):1003–26.

    Article  CAS  PubMed  Google Scholar 

  8. US Pharmacopeial Convention: United States Pharmacopeia 38/National Formulary 33, Chapter <1601> Products for Nebulization. Rockville, MD, 2015.

  9. European Directorate for Quality in Medicines (EDQM): European pharmacopeia 8.0, monograph 2.9.44. Preparations for nebulization. Strasburg, France EDQM 2014 (January).

  10. US Pharmacopeial Convention: In-Process-Revision. Proposed chapter <1602>: spacers and valved holding chambers used with inhalation aerosols: characterization tests. Pharm Forum 2015;41(5). On-line at: http://www.usppf.com/pf/pub/index.html. Accessed 10 Oct 2015.

  11. Melani AS, Bonavia M, Cilenti V, Cinti C, Lodi M, Martucci P, et al. Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir Med. 2011;105:930–8.

    Article  PubMed  Google Scholar 

  12. Melani AS, Canessa P, Coloretti I, DeAngelis G, DeTullio R, Del Donno M, et al. Inhaler mishandling is very common in patients with chronic airflow obstruction and long-term home nebulizer use. Respir Med. 2012;106:668–76.

    Article  PubMed  Google Scholar 

  13. Crompton GK, Barnes PJ, Broeders M, Corrigan C, Corbetta L, Dekhuijzen R, et al. The need to improve inhalation technique in Europe: a report from the aerosol drug management improvement team. Respir Med. 2006;100(9):1479–94.

    Article  CAS  PubMed  Google Scholar 

  14. Melani AS, Zanchetta D, Barbato N, Sestini P, Cinti C, Canessa PA, et al. Inhalation technique and variables associated with misuse of conventional metered-dose inhalers and newer dry powder inhalers in experienced adults. Ann Allergy Asthma Immunol. 2004;93(5):439–46.

    Article  PubMed  Google Scholar 

  15. Hamilton M, Leggett R, Pang C, Charles S, Gillett B, Prime D. In vitro dosing performance of the ELLIPTA® dry powder inhaler using asthma and COPD patient inhalation profiles replicated with the Electronic Lung (eLung™). J Aerosol Med Pulmon Deliv. 2015;28(6). doi:10.1089/jamp.2015.1225.

  16. Prime D, De Bakker W, Hamilton M, Cahn A, Preece A, Kelleher D, Baines A, Moore A, Brealey N, Moynihan J. Effect of disease severity in asthma and chronic obstructive pulmonary disease on inhaler-specific inhalation profiles through the ELLIPTA® dry powder inhaler. J Aerosol Med Pulmon Deliv. 2015;28(6). doi:10.1089/jamp.2015.1224.

  17. Purewal TS. Test methods for inhalers to check performance under normal use and unintentional misuse conditions. Pharmeuropa. 2002;14(3):470–4.

    Google Scholar 

  18. Mitchell JP. Appropriate face models for evaluating drug delivery in the laboratory: the current situation and prospects for future advances. J Aerosol Med Pulmon Deliv. 2008;21(1):97–111.

    Article  Google Scholar 

  19. Canadian Standards Association (CSA): Spacers and holding chambers for use with metered-dose inhalers. CAN/CSA/Z264.1.02. Mississauga, Ontario, 2002, updated 2008.

  20. Delvadia RR, Wei X, Worth Longest P, Venitz J, Byron P. In vitro tests for aerosol deposition. IV: Simulating variations in human breath profiles for realistic DPI testing. J Aerosol Med Pulmon Deliv. 2016;29(2):196–206. doi:10.1089/jamp.2015.1215 visited, December 19th 2015.

  21. Newman SP, Busse WW. Evolution of dry powder inhaler design, formulation, and performance. Respir Med. 2002;96:293–304.

    Article  CAS  PubMed  Google Scholar 

  22. Azouz W, Chetcuti P, Hosker HSR, Jaralaya D, Stephenson J, Chrystyn H. The inhalation characteristics of patients when they use different dry powder inhalers. J Aerosol Med Pulmon Deliv. 2015;28(1):35–42.

    Article  Google Scholar 

  23. Leach CT, Colice GL. A pilot study to assess lung deposition of HFA-beclometasone and CFC-beclometasone from a pressurized metered dose inhaler with and without add-on spacers and using varying breathhold times. J Aerosol Med Pulm Drug Deliv. 2010;23:355–61.

    Article  CAS  PubMed  Google Scholar 

  24. Schultz A, Le Souëf T, Venter A, Zhang G, Devadason SG, Le Souëf PN. Aerosol inhalation from spacers and valved holding chambers requires few tidal breaths for children. Pediatrics. 2010;126(6):1493–8.

    Article  Google Scholar 

  25. Nikander K, Denyer J. Breathing patterns. Eur Respir Rev. 2000;10(76):576–97.

    Google Scholar 

  26. Mitchell JP. Delivering orally inhaled medications to the older patient with COPD and/or asthma: a challenge in both device design and clinical approach. Inhalation. 2015;9(4):14–20.

    Google Scholar 

  27. Myrdal PB, Sheth P, Stein SW. Advances in metered dose inhaler technology: formulation development. AAPS PharmSciTech. 2014;15(2):434–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fink JB. Metered-dose inhalers, dry powder inhalers, and transitions. Respir Care. 2000;45(6):623–35.

    CAS  PubMed  Google Scholar 

  29. Mitchell JP, Dolovich MB. Clinically relevant test methods to establish in vitro equivalence for spacers and valved holding chambers used with pressurized metered dose inhalers (pMDIs). J Aerosol Med Pulmon Deliv. 2012;25:217–42.

    Article  CAS  Google Scholar 

  30. Corr D, Dolovich M, McCormack D, Ruffin R, Obminski G, Newhouse M. Design and characteristics of a portable breath actuated, particle size selective medical aerosol inhaler. J Aerosol Sci. 1982;13(1):1–7.

    Article  Google Scholar 

  31. Dolovich MB. In my opinion: interview with the expert. Pediatr Asthma Allergy Immunol. 2004;17:292–300.

    Article  Google Scholar 

  32. Atkins PJ. Dry powder inhalers: an overview. Respir Care. 2005;50(10):1304–12.

    PubMed  Google Scholar 

  33. Hoppentocht M, Hagedoorn P, Frijlink HW, de Boer AH. Technological and practical challenges of dry powder inhalers and formulations. Adv Drug Deliv Rev. 2014;75:18–31.

    Article  CAS  PubMed  Google Scholar 

  34. Dalby RN, Tiano SL, Hickey AJ. Medical devices for the delivery of therapeutic aerosols to the lungs. In: Hickey AJ, editor. Inhalation aerosols: physical and biological basis for therapy. NY: Marcel Dekker; 1996. p. 441–73.

    Google Scholar 

  35. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209–27.

    PubMed  Google Scholar 

  36. Demoly P, Hagedoorn P, de Boer AH, Frijlink HW. The clinical relevance of dry powder inhaler performance for drug delivery. Respir Med. 2014;108(8):1195–203.

    Article  PubMed  Google Scholar 

  37. Clark AR. Effect of powder inhaler resistance upon inspiratory flow profiles in health and disease. In: Byron PR, Dalby RN, Farr SJ, editors. Respiratory drug delivery-IV. Buffalo Grove: Interpharm Press; 1994. p. 117–23.

    Google Scholar 

  38. Clark AR, Hollingworth AM. The relationship between powder inhaler resistance and peak inspiratory conditions in healthy volunteers—implications for in vitro testing. J Aerosol Med. 1993;6:99–110.

    Article  CAS  PubMed  Google Scholar 

  39. Broeders M, Vincken W, Corbetta L. The ADMIT series—issues in inhalation therapy. 7) Ways to improve pharmacological management of COPD: the importance of inhaler choice and inhalation technique. Prim Care Respir J. 2011;20(3):338–43.

    Article  PubMed  Google Scholar 

  40. Delvadia RR, Wei X, Worth Longest P, Venitz J, Byron PR. In vitro tests for aerosol deposition. IV: Simulating variations in human breath profiles for realistic DPI testing. J Aerosol Med Pulmon Deliv. 2015: Fast Track available on-line at: doi: 10.1089/jamp.2015.1215.

  41. Chrystyn H, Safioti G, Keegstra JR, Gopalan G. Effect of inhalation profile and throat geometry on predicted lung deposition of budesonide and formoterol (BF) in COPD: an in-vitro comparison of Spiromax with Turbuhaler. Int J Pharm. 2015;491:268–76.

    Article  CAS  PubMed  Google Scholar 

  42. Lindert S, Below A, Breitkreuz J. Performance of dry powder inhalers with single dosed capsules in preschool children and adults using improved upper airway models. Pharmaceutics. 2014;6:36–51.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brindley A, Sumby BS, Smith IJ. The characterization of inhalation devices by an inhalation simulator: the Electronic Lung. J Aerosol Med. 1994;7:197–200.

    Article  CAS  PubMed  Google Scholar 

  44. Burnell PKP, Malton A, Reavill K, Ball MHE. Design, validation and initial testing of the Electronic Lung™ device. J Aerosol Sci. 1998;29:1011–25.

    Article  CAS  Google Scholar 

  45. Miller NC. Apparatus and process for aerosol size measurement at varying gas flow rates. US Patent 6,435,004-B1, 2002.

  46. Olsson B, Berg E, Svensson M. Comparing aerosol size distribution that penetrates mouth–throat models under realistic inhalation conditions. In: Dalby RN, Byron PR, Peart J, Suman JD, Young PM, editors. Respiratory drug delivery 2010. River Grove: Davis Healthcare International Publishing LLC; 2010. p. 225–34.

    Google Scholar 

  47. Hochrainer D, Hölz H, Kreher C, Scaffidi L, Spallek M, Wachtel H. Comparison of the aerosol velocity and spray duration of Respimat® Soft Mist™ inhaler and pressurized metered dose inhalers. J Aerosol Med. 2005;18:273–82.

    Article  CAS  PubMed  Google Scholar 

  48. Ari A. Jet, ultrasonic, and mesh nebulizers: an evaluation of nebulizers for better clinical outcomes. Eurasian J Pulmonol. 2014;16(1):1–7.

    Article  Google Scholar 

  49. O’Callaghan C, Barry P. The science of nebulised drug delivery. Thorax. 1997;52S2:S31–44.

    Article  Google Scholar 

  50. Bauer A, McGlynn P, Bovet LL, Mims PL, Curry LA, Hanrahan JP. The influence of breathing pattern during nebulization on the delivery of arformoterol using a breath simulator. Respir Care. 2009;54(11):1488–92.

    PubMed  Google Scholar 

  51. Rau JL, Ari A, Restrepo R. Performance comparison of nebulizer designs: constant-output, breath-enhanced, and dosimetric. Respir Care. 2004;49(2):174–9.

    PubMed  Google Scholar 

  52. Schmidt J, Pevler J, Doyle C, Wiersema K, Nagel M, Mitchell P. Are first and second generation mechanically-operated breath-actuated nebulizers (BANs) comparable based on in vitro performance? In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, editors. Respiratory drug delivery 2006. River Grove: Davis Healthcare International Publishing LLC; 2006. p. 817–9.

    Google Scholar 

  53. Denyer J, Nikander K, Smith NJ. Adaptive aerosol delivery (AAD) technology. Expert Opin Drug Deliv. 2004;1:165–76.

    Article  CAS  PubMed  Google Scholar 

  54. Schneider H, Ali R, Nagel M, Suggett J, Mitchell JP. A laboratory study comparing breath-actuated and breath-enhanced nebulizer devices at various duty cycles associated with COPD. Am J Respir Crit Care Med. 2014; 189-Meeting Abstracts;A-3035.

  55. International Standards Organization: Aerosol drug delivery device design verification: requirements and test methods. ISO 20072:2009, Geneva, Switzerland.

  56. Levy ML, Hardwell A, McKnight E, Holmes J. Asthma patients’ inability to use a pressurised metered-dose inhaler (pMDI) correctly correlates with poor asthma control as defined by the Global Initiative for Asthma (GINA) strategy: a retrospective analysis. Prim Care Respir J. 2013;22:406–11.

    Article  PubMed  Google Scholar 

  57. Crane MA, Jenkins CR, Goeman DP, Douglass JA. Inhaler device technique can be improved in older adults through tailored education: findings from a randomised controlled trial. NPJ Prim Care Respir Med. 2014; 24: Article number: 14034—on-line at: http://www.nature.com/articles/npjpcrm201434.

  58. Crompton GK. Problems patients have using pressurized aerosol inhalers. Eur J Respir Dis. 1982;63:101–4.

    Google Scholar 

  59. Hoisignton E, Chatburn R, Stoller JK. A comparison of respiratory care workload and staffing patterns using two different nebulizer devices. Respir Care. 2009;54(4):495–9.

    Google Scholar 

  60. Lavorini F. The challenge of delivering therapeutic aerosols to asthma patients. ISRN Allergy. 2013: Article 102418. On-line at: http://www.hindawi.com/journals/isrn/2013/102418/#B31.

  61. Lavorini F, Fontana GA. Targeting drugs to the airways: the role of spacer devices. Expert Opin Drug Deliv. 2009;6(1):91–102.

    Article  CAS  PubMed  Google Scholar 

  62. Mitchell JP, Coppolo DP, Nagel MW. Electrostatics and inhaled medications: influence on delivery via pressurized metered-dose inhalers and add-on devices. Respir Care. 2007;52(3):283–300.

    PubMed  Google Scholar 

  63. Mitchell JP, Nagel MW. Valved holding chambers (VHCs) for use with pressurized metered-dose inhalers (pMDIs): a review of causes of inconsistent medication delivery. Prim Care Respir J. 2007;16(4):207–14.

    Article  PubMed  Google Scholar 

  64. Nagel MW, Schmidt JN, Doyle CC, Varallo VM, Mitchell JP. Delay testing of valved holding chambers (VHCs) with a new apparatus. Drug delivery to the lungs-14. London: Aerosol Society; 2003. p. 79–82.

    Google Scholar 

  65. Marple VA, Liu BYH. Characteristics of laminar jet impactors. Environ Sci Technol. 1974;8:648–54.

    Article  CAS  Google Scholar 

  66. Suggett J, Mitchell JP, Doyle C, Wang V, Nagel MW. Antistatic valved holding chambers do not necessarily offer similar aerosol delivery performance. Eur Respir J. 2013;42(Supple 57):494S (abstract).

  67. Ahrens R, Lux C, Bahl T, Han S. Choosing the metered dose inhaler spacer or holding chamber that matches the patient’s need: evidence that specific drug being delivered is an important consideration. J Allergy Clin Immunol. 1995;96:288–94.

  68. Aubier M, Murciano D, Fournier M, Milic-Emili J, Pariente R, Derenne J-P. Central respiratory drive in acute respiratory failure of patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1980;122(2):191–9.

  69. Alhaddad B, Smith FJ, Robertson T, Watman G, Taylor KMG. Patient’s practices and experiences of using nebulizer therapy in the management of COPD at home. BMJ Open Respir Res. 2015;2: Article e000076; on-line at: http://bmjopenrespres.bmj.com/content/2/1/e000076.abstract.

  70. Nagel MW, Suggett JA, Doyle C, Wang V, Mitchell JP. The use of patient-generated breathing waveforms for the clinically appropriate evaluation of representative nebulizing systems. Proc. 20th Congress of the International Society for Aerosols in Medicine (abstract). J Aerosol Med Pulmon Deliv. 2015;28(3):A9.

    Google Scholar 

  71. Mitchell JP. Appropriate face models for evaluating drug delivery in infants and small children: the current situation and prospects for future advances. J Aerosol Med. 2008;21(1):97–111.

    Article  Google Scholar 

  72. Allen SC, Ragab S. Ability to learn inhaler technique in relation to cognitive scores and test of praxis in old age. Postgrad Med J. 2002;78:37–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Esposito-Festen JE, Ates B, Van Vliet FLM, Verbraak AFM, de Jongste JC, Tiddens HAWM. Effect of a facemask leak on aerosol delivery from a pMDI-spacer system. J Aerosol Med. 2004;17(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  74. Everard ML, Clark AR, Milner AD. Drug delivery from holding chambers with attached facemask. Arch Dis Child. 1992;67:580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sangwan S, Gurses BK, Smaldone GC. Facemasks and facial deposition of aerosols. Pediatr Pulmonol. 2004;37:447–52.

    Article  PubMed  Google Scholar 

  76. Shah SA, Berlinski A, Rubin BK. Force-dependent static dead space of face masks used with holding chambers. Respir Care. 2006;51:140–4.

    PubMed  Google Scholar 

  77. Carrigy NB, O’Reilly C, Schmitt J, Noga M, Finlay WH. Effect of facial material softness and applied force on face mask dead volume, face mask seal, and inhaled corticosteroid delivery through an idealized infant replica. J Aerosol Med Pulmon Deliv. 2014;27(4):290–8.

    Article  CAS  Google Scholar 

  78. Janssens HM, de Jongste JC, Fokkens WJ, Robben SGF, Wouters K, Tiddens HAWM. The Sophia anatomical infant nose-throat (Saint) model: a valuable tool to study aerosol deposition in infants. J Aerosol Med. 2001;14:433–41.

    Article  CAS  PubMed  Google Scholar 

  79. Laube B, Sharpless G, Shermer C, Nasir O, Sullivan V, Powell K. Deposition of albuterol aerosol generated by pneumatic nebulizer in the Sophia anatomical infant nose-throat (SAINT) model. Pharm Res. 2010;27(8):1722–9.

    Article  CAS  PubMed  Google Scholar 

  80. Laube B, Sharpless G, Shermer C, Sullivan V, Powell K. Deposition of dry powder generated by Solovent in Sophia Anatomical Infant Nose-Throat (SAINT) model. Aerosol Sci Technol. 2012;46(5):514–20.

    Article  CAS  Google Scholar 

  81. Schüepp KG, Jauernig J, Janssens HM, Tiddens HAWM, Straub DA, Stangle R, et al. In vitro determinations of the optimal particle size for nebulized aerosol delivery to infants. J Aerosol Med. 2005;18(2):225–35.

    Article  PubMed  Google Scholar 

  82. Minocchieri S, Burren JM, Bachmann MA, Stern G, Wildhaber J, Buob S, et al. Development of the premature infant nose throat-model (PrINT-model): an upper airway replica of a premature neonate for the study of aerosol delivery. Pediatr Res. 2008;64(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  83. Mitchell JP, Nagel M, Finlay B. Advances in models for laboratory testing of inhalers: there’s more to it than meets the nose or mouth. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory drug delivery Europe 2011. River Grove: Davis Healthcare International Publishing LLC; 2011. p. 457–61.

    Google Scholar 

  84. Mitchell JP, Finlay JB, Nuttall M, Limbrick M, Nagel MW, Avvakoumova VI, et al. Validation of a new model infant face with nasopharynx for the testing of valved holding chambers with facemask as a patient interface. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory drug delivery 2010. River Grove: Davis Healthcare International Publishing LLC; 2011. p. 777–80.

    Google Scholar 

  85. Storey-Bischoff J, Noga M, Finlay WH. Deposition of micrometer-sized aerosol particles in infant nasal airway replicas. J Aerosol Sci. 2008;39(12):1055–65.

    Article  Google Scholar 

  86. Mitchell JP, Nuttall M, Limbrick M, Wang V, Doyle C, Nagel M. The evaluation of aerosol delivery via a pressurized metered dose inhaler with valved holding chamber to an anatomical model of a small child face. In: Dalby RN, Byron PR, Peart J, Suman JD, Young PM, Traini D, editors. Respiratory drug delivery Europe 2013. River Grove: Davis Healthcare International Publishing LLC; 2011. p. 379–82.

    Google Scholar 

  87. Tal A, Golan H, Grauer N, Aviram M, Albin D, Quastel MR. Deposition pattern of radiolabeled salbutamol inhaled from a metered-dose inhaler by means of a spacer with mask in young children with airway obstruction. J Pediatr. 1996;128(4):479–84.

    Article  CAS  PubMed  Google Scholar 

  88. Centers for Disease Control and Prevention: CDC growth charts. CDC, Atlanta, GA, USA. 2015. On-line at: http://www.cdc.gov/growthcharts/.

  89. GSK Inc: Highlights of prescribing information—Ventolin HFA. December 2014. On-line at: https://www.gsksource.com/pharma/content/dam/GlaxoSmithKline/US/en/Prescribing_Information/Ventolin_HFA/pdf/VENTOLIN-HFA-PI-PIL.PDF.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolyon P. Mitchell.

Ethics declarations

Author Disclosure Statement

JS and MWN are employees of TMI, who provided funding to support the development of this article that was presented by JPM at the International Society for Aerosols in Medicine (ISAM) Congress, Munich, Germany in June 2015, in his capacity as a consultant to TMI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, J.P., Suggett, J. & Nagel, M. Clinically Relevant In Vitro Testing of Orally Inhaled Products—Bridging the Gap Between the Lab and the Patient. AAPS PharmSciTech 17, 787–804 (2016). https://doi.org/10.1208/s12249-016-0543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0543-x

KEY WORDS

Navigation