Skip to main content
Log in

Visible and Sub-visible Particle Formation for a Model Bioconjugate

  • Brief/Technical Note
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The time-course and extent of visible particle (VP) and sub-visible particle (SVP) formation was monitored as a function of interfacial area (IA) for a model bioconjugate. To facilitate particle formation, the bioconjugate was agitated in a glass vial and exposed to IAs up to 478 mm2. Since vials had equal fill and headspace volumes, the area of the air-water interface was varied by placing vials on angled blocks at 0°, 30°, 60°, or 90° from the horizontal. A significant increase in visible and sub-visible particle formation was observed with increasing air-water IA. Exposure to IAs below ∼305 mm2 resulted in the formation of very few particles, while IAs > ∼305 mm2 resulted in substantial particle formation. Visible and sub-visible particle morphology varied with interfacial area and time. The sub-visible particles initially increased with time but did not reach steady state; instead the initial increase was followed by complete depletion. These phenomena indicate that visible particle formation likely increased at the expense of the sub-visible particle population and demonstrate a potential link between the two particle populations for this model bioconjugate. Initiation of particle formation did not result in corresponding decreases in protein concentration or increases in soluble aggregates. However, extended agitation time resulted in a significant decrease in protein concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

IA:

Interfacial area

SVP:

Sub-visible particle

VP:

Visible particle

References

  1. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99(8):3302–21.

    Article  CAS  PubMed  Google Scholar 

  3. USP. General Chapters: <788 > Particulate matter in injections. U.S. Pharmacopeial Convention. 2009.

  4. Narhi LO, Jiang Y, Cao S, Benedek K, Shnek D. A critical review of analytical methods for subvisible and visible particles. Curr Pharm Biotechnol. 2009;10(4):373–81.

    Article  CAS  PubMed  Google Scholar 

  5. Khare P, Jain A, Gulbake A, Soni V, Jain NK, Jain SK. Bioconjugates: harnessing potential for effective therapeutics. Crit Rev Ther Drug Carrier Syst. 2009;26(2):119–55.

    Article  CAS  PubMed  Google Scholar 

  6. Carter PJ. Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res. 2011;317(9):1261–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bee JS, Chiu D, Sawicki S, Stevenson JL, Chatterjee K, Freund E, et al. Monoclonal antibody interactions with micro- and nanoparticles: adsorption, aggregation, and accelerated stress studies. J Pharm Sci. 2009;98(9):3218–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiese S, Papppenberger A, Friess W, Mahler HC. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97(10):4347–66.

    Article  CAS  PubMed  Google Scholar 

  9. Maa YF, Hsu CC. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng. 1997;54(6):503–12.

    Article  CAS  PubMed  Google Scholar 

  10. Sluzky V, Tamada JA, Klibanov AM, Langer R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci U S A. 1991;88(21):9377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Damodaran S, Razumovsky L. Role of surface area-to-volume ratio in protein adsorption at the air–water interface. Surf Sci. 2008;602(1):307–15.

    Article  CAS  Google Scholar 

  12. Gidalevitz D, Huang Z, Rice SA. Protein folding at the air-water interface studied with x-ray reflectivity. Proc Natl Acad Sci U S A. 1999;96(6):2608–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carpenter JF, Kendrick BS, Chang BS, Manning MC, Randolph TW. Inhibition of stress-induced aggregation of protein therapeutics. Methods Enzymol. 1999;309:236–55.

    Article  CAS  PubMed  Google Scholar 

  14. De Jongh HHJ, Kosters HA, Kudryashova E, Meinders MBJ, Trofimova D, Wierenga PA. Protein adsorption at air-water interfaces: a combination of details. Biopolymers. 2004:131–5.

  15. Basu P, Blake-Haskins AW, O’Berry KB, Randolph TW, Carpenter JF. Albinterferon α2b adsorption to silicone oil-water interfaces: effects on protein conformation, aggregation, and subvisible particle formation. J Pharm Sci. 2014;103(2):427–36.

    Article  CAS  PubMed  Google Scholar 

  16. Basu P, Krishnan S, Thirumangalathu R, Randolph TW, Carpenter JF. IgG1 aggregation and particle formation induced by silicone-water interfaces on siliconized borosilicate glass beads: a model for siliconized primary containers. J Pharm Sci. 2013;102(3):852–65.

    Article  CAS  PubMed  Google Scholar 

  17. Gerhardt A, McGraw NR, Schwartz DK, Bee JS, Carpenter JF, Randolph TW. Protein aggregation and particle formation in prefilled glass syringes. J Pharm Sci. 2014;103(6):1601–12.

    Article  CAS  PubMed  Google Scholar 

  18. Rudiuk S, Cohen-Tannoudji L, Huille S, Tribet C. Importance of the dynamics of adsorption and of a transient interfacial stress on the formation of aggregates of IgG antibodies. Soft Matter. 2012;8(9):2651.

    Article  CAS  Google Scholar 

  19. Campioni S, Carret G, Jordens S, Nicoud L, Mezzenga R, Riek R. The presence of an air-water interface affects formation and elongation of α-synuclein fibrils. J Am Chem Soc. 2014;136(7):2866–75.

    Article  CAS  PubMed  Google Scholar 

  20. Simler BR, Hui G, Dahl JE, Perez-Ramirez B. Mechanistic complexity of subvisible particle formation: links to protein aggregation are highly specific. J Pharm Sci. 2012;101(11):4140–54.

    Article  CAS  PubMed  Google Scholar 

  21. Mehta SB, Lewus R, Bee JS, Randolph TW, Carpenter JF. Gelation of a monoclonal antibody at the silicone oil – water interface and subsequent rupture of the interfacial gel results in aggregation and particle formation. J Pharm Sci. 2014;104(4):1–9.

    Google Scholar 

  22. Mahler HC, Müller R, Frieß W, Delille A, Matheus S. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm. 2005;59(3):407–17.

    Article  CAS  PubMed  Google Scholar 

  23. Bam NB, Cleland JL, Yang J, Manning MC, Carpenter JF, Kelley RF, et al. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci. 1998;87(12):1554–9.

    Article  CAS  PubMed  Google Scholar 

  24. Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20(9):1325–36.

    Article  CAS  PubMed  Google Scholar 

  25. Huang C-T, Sharma D, Oma P, Krishnamurthy R. Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci. 2009;98(9):3058–71.

    Article  CAS  PubMed  Google Scholar 

  26. Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286(28):25118–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu R, Dickinson E, Murray BS. Morphological changes in adsorbed protein films at the air − water interface subjected to large area variations, as observed by brewster angle microscopy. Langmuir. 2007;23(9):5005–13.

    Article  CAS  PubMed  Google Scholar 

  28. Lumry R, Eyring H. Conformation changes of proteins. J Phys Chem. 1954;58(2):110–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Maria Toler and Satish Singh for input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavinia M. Lewis.

Additional information

The work presented in the paper was performed by the authors during their tenure at Pfizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, L.M., Pizzo, M.E., Sinha, S. et al. Visible and Sub-visible Particle Formation for a Model Bioconjugate. AAPS PharmSciTech 18, 926–931 (2017). https://doi.org/10.1208/s12249-016-0540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0540-0

KEY WORDS

Navigation