Skip to main content

Advertisement

Log in

Study on Enhanced Dissolution of Azilsartan-Loaded Solid Dispersion, Prepared by Combining Wet Milling and Spray-Drying Technologies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop a combination method of wet milling and spray-drying technologies to prepare the solid dispersion and improve the dissolution rate of poorly water-soluble drug candidates. Azilsartan (AZL) was selected as the model drug for its poor water solubility. In the study, AZL-loaded solid dispersion was prepared with polyethylene glycol 6000 (PEG6000) and hydroxypropyl cellulose with super low viscosity (HPC-SL) as stabilizers by using combination of wet grinding and spray-drying methods. The high AZL loading solid dispersion was then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Besides, dissolution test was carried out by the paddle method and stability investigation was also conducted. As a result, the dissolution rate of the solid dispersion tablets was found to be greater than conventional tablets, but in close agreement with market tablets. Furthermore, the formulation was shown to be stable at 40 ± 2°C and 75 ± 5% for at least 6 months, owing to its decreased particle size, morphology, and its crystal form. It was concluded that the combination of wet milling and spray-drying approaches to prepare solid dispersion would be a prospective method to improve the dissolution rate of poorly water-soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2000;50:47–60.

    CAS  Google Scholar 

  2. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75. doi:10.1016/j.drudis.2007.09.005.

    Article  CAS  PubMed  Google Scholar 

  3. Hu J, Ng WK, Dong Y, Shen S, Tan RB. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int J Pharm. 2011;404(1–2):198–204. doi:10.1016/j.ijpharm.2010.10.055.

    Article  CAS  PubMed  Google Scholar 

  4. Lee M-J, Straubinger RM, Jusko WJ. Physicochemical, pharmacokinetic and pharmacodynamic evaluation of liposomal tacrolimus (FK 506) in rats. Pharm Res. 1995;12:1055–9.

    Article  CAS  PubMed  Google Scholar 

  5. Nassar T, Rom A, Nyska A, Benita S. A novel nanocapsule delivery system to overcome intestinal degradation and drug transport limited absorption of P-glycoprotein substrate drugs. Pharm Res. 2008;25(9):2019–29. doi:10.1007/s11095-008-9585-4.

    Article  CAS  PubMed  Google Scholar 

  6. Sinswat P, Overhoff KA, McConville JT, Johnston KP, Williams 3rd RO. Nebulization of nanoparticulate amorphous or crystalline tacrolimus—single-dose pharmacokinetics study in mice. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2008;69(3):1057–66. doi:10.1016/j.ejpb.2008.01.037.

    CAS  Google Scholar 

  7. Viernstein H, Weiss-Greiler P, Wolschann P. Solubility enhancement of low soluble biologically active compounds—temperature and cosolvent dependent inclusion complexation. Int J Pharm. 2003;256(1–2):85–94. doi:10.1016/s0378-5173(03)00065-6.

    Article  CAS  PubMed  Google Scholar 

  8. Chung Y, Cho H. Preparation of highly water soluble tacrolimus derivatives: poly(ethylene glycol) esters as potential prodrugs. Arch Pharm Res. 2004;27:873–83.

    Article  Google Scholar 

  9. Park YJ, Ryu DS, Li DX, Quan QZ, Oh DH, Kim JO, et al. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate. Arch Pharm Res. 2009;32(6):893–8. doi:10.1007/s12272-009-1611-5.

    Article  CAS  PubMed  Google Scholar 

  10. Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, et al. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267(1–2):79–91. doi:10.1016/j.ijpharm.2003.07.010.

    Article  CAS  PubMed  Google Scholar 

  11. Joe JH, Lee WM, Park Y-J, Joe KH, Oh DH, Seo YG, et al. Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int J Pharm. 2010;395(1–2):161–6. doi:10.1016/j.ijpharm.2010.05.023.

    Article  CAS  PubMed  Google Scholar 

  12. Ewing AV, Clarke GS, Kazarian SG. Stability of indomethacin with relevance to the release from amorphous solid dispersions studied with ATR-FTIR spectroscopic imaging. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2014;60:64–71. doi:10.1016/j.ejps.2014.05.001.

    CAS  Google Scholar 

  13. Lust A, Strachan CJ, Veski P, Aaltonen J, Heinamaki J, Yliruusi J, et al. Amorphous solid dispersions of piroxicam and Soluplus((R)): qualitative and quantitative analysis of piroxicam recrystallization during storage. Int J Pharm. 2015;486(1–2):306–14. doi:10.1016/j.ijpharm.2015.03.079.

    Article  CAS  PubMed  Google Scholar 

  14. Mehanna MM, Motawaa AM, Samaha MW. In sight into tadalafil-block copolymer binary solid dispersion: mechanistic investigation of dissolution enhancement. Int J Pharm. 2010;402(1–2):78–88. doi:10.1016/j.ijpharm.2010.09.024.

    Article  CAS  PubMed  Google Scholar 

  15. Yan YD, Sung JH, Kim KK, Kim DW, Kim JO, Lee BJ, et al. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm. 2012;422(1–2):202–10. doi:10.1016/j.ijpharm.2011.10.053.

    Article  CAS  PubMed  Google Scholar 

  16. Kim EJ, Chun MK, Jang JS, Lee IH, Lee KR, Choi HK. Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2006;64(2):200–5. doi:10.1016/j.ejpb.2006.04.001.

    CAS  Google Scholar 

  17. Agrawal AM, Dudhedia MS, Zimny E. Hot melt extrusion: development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. AAPS PharmSciTech. 2015. doi:10.1208/s12249-015-0425-7.

    PubMed Central  Google Scholar 

  18. Takahashi H, Chen R, Okamoto H, Danjo K. Acetaminophen particle design using chitosan and a spray-drying technique. Chem Pharm Bull. 2005;53:37–41.

    Article  CAS  PubMed  Google Scholar 

  19. Ojima M, Igata H, Tanaka M, Sakamoto H, Kuroita T, Kohara Y, et al. In vitro antagonistic properties of a new angiotensin type 1 receptor blocker, azilsartan, in receptor binding and function studies. J Pharmacol Exp Ther. 2011;336(3):801–8. doi:10.1124/jpet.110.176636.

    Article  CAS  PubMed  Google Scholar 

  20. Weltman R, Brands CMJ, Corral E, Desmares-Koopmans MJE, Migchielsen MHJ, Oudhoff KA, et al. Assessment of the environmental fate and effects of azilsartan, a selective antagonist of angiotensin II type 1. Chemosphere. 2012;87(11):1323–9. doi:10.1016/j.chemosphere.2012.01.053.

    Article  CAS  PubMed  Google Scholar 

  21. Gong C, Wang J, Sun Y, Ding D, Zhong L, Zhu M, et al. UPLC–MS/MS for the determination of azilsartan in beagle dog plasma and its application in a pharmacokinetics study. Asian J Pharm Sci. 2015;10(3):247–53. doi:10.1016/j.ajps.2014.10.004.

    Article  Google Scholar 

  22. Liu P, De Wulf O, Laru J, Heikkila T, van Veen B, Kiesvaara J, et al. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech. 2013;14(2):748–56. doi:10.1208/s12249-013-9960-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kougoulos E, Smales I, Verrier HM. Towards integrated drug substance and drug product design for an active pharmaceutical ingredient using particle engineering. AAPS PharmSciTech. 2011;12(1):287–94. doi:10.1208/s12249-011-9582-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye X, Patil H, Feng X, Tiwari RV, Lu J, Gryczke A, et al. Conjugation of hot-melt extrusion with high-pressure homogenization: a novel method of continuously preparing nanocrystal solid dispersions. AAPS PharmSciTech. 2015. doi:10.1208/s12249-015-0389-7.

    PubMed Central  Google Scholar 

  25. Gilani K, Najafabadi AR, Barghi M, Rafiee-Tehrani M. Aerosolisation of beclomethasone dipropionate using spray dried/lactose/polyethylene glycol carriers. Eur J Pharm Biopharm. 2004;58:595–606. doi:10.1016/j.ejpb.2004.04.011.

    Article  CAS  PubMed  Google Scholar 

  26. Xia D, Quan P, Piao H, Piao H, Sun S, Yin Y, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2010;40(4):325–34. doi:10.1016/j.ejps.2010.04.006.

    CAS  Google Scholar 

  27. Xu Y, Liu X, Lian R, Zheng S, Yin Z, Lu Y, et al. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid–base neutralization. Int J Pharm. 2012;438(1–2):287–95. doi:10.1016/j.ijpharm.2012.09.020.

    Article  CAS  PubMed  Google Scholar 

  28. Yang M, He S, Fan Y, Wang Y, Ge Z, Shan L, et al. Microenvironmental pH-modified solid dispersions to enhance the dissolution and bioavailability of poorly water-soluble weakly basic GT0918, a developing anti-prostate cancer drug: preparation, characterization and evaluation in vivo. Int J Pharm. 2014;475(1–2):97–109. doi:10.1016/j.ijpharm.2014.08.047.

    Article  CAS  PubMed  Google Scholar 

  29. Celebi H, Kurt A. Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym. 2015;133:284–93. doi:10.1016/j.carbpol.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  30. Sonali D, Tejal S, Vaishali T, Tejal G. Silymarin-solid dispersions: characterization and influence of preparation methods on dissolution. Acta Pharma. 2010;60(4):427–43. doi:10.2478/v10007-010-0038-3.

    Article  CAS  Google Scholar 

  31. Morakul B, Suksiriworapong J, Chomnawang MT, Langguth P, Junyaprasert VB. Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by precipitation-lyophilization-homogenization method. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2014;88(3):886–96. doi:10.1016/j.ejpb.2014.08.013.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from the Science and technology research project of Education Department of Liaoning Province (L2013390).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghua Sun or Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Sun, Y., Ding, D. et al. Study on Enhanced Dissolution of Azilsartan-Loaded Solid Dispersion, Prepared by Combining Wet Milling and Spray-Drying Technologies. AAPS PharmSciTech 18, 473–480 (2017). https://doi.org/10.1208/s12249-016-0531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0531-1

KEY WORDS

Navigation