Skip to main content
Log in

Design and Concept of Polyzwitterionic Copolymer Microgel Drug Delivery Systems In Situ Loaded with Non-steroidal Anti-inflammatory Ibuprofen

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Nowadays, the modern pharmaceutical investigations are directed toward obtaining of new polymer micro- and nano-sized drug delivery carriers. In this respect, the use of hydrogel carriers based on polyzwitterions (PZIs) is an opportunity in the preparation of polymer drug delivery systems with desired characteristics. This paper describes the synthesis and characterization of micro-structured p(VA-co-DMAPS) systems with different compositions in situ loaded with Ibuprofen by emulsifier-free emulsion copolymerization (EEC) in water. The mean size of the prepared microparticles was measured by SEM and particles have been visualized by AFM. The inclusion of Ibuprofen in the polyzwitterionic copolymer microgel systems was established by using DSC. In vitro drug release experiments were carried out in order to estimate the ability of the obtained microgels to modify the release of water-insoluble Ibuprofen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Vázques MJ, Pérez-Marcos B, Gómez-Amoza JL, Anez-Pacheco R, Souto C, Concheiro A. Influence of technological variables on release of drugs from hydrophilic matrices. Drug Dev Ind Pharm. 1992;18:1355–75.

    Article  Google Scholar 

  2. Chien YW. Novel drugs delivery systems. 2nd ed. New York: Marsel Decker; 1992.

    Google Scholar 

  3. Chaudhury A, Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech. 2001;12(1):10–20.

    Article  Google Scholar 

  4. Kumar RN, Kumar MN. Polymeric controlled drug-delivery systems: perspective issues and opportunities. Drug Dev Ind Pharm. 2001;27:1–30.

    Article  CAS  PubMed  Google Scholar 

  5. Bredas J, Chance R, Silbey R. Head-head interactions in zwitterionic associating polymers. Macromolecules. 1988;21:1633–9.

    Article  CAS  Google Scholar 

  6. Tsonchev S, Troisi A, Schatz G, Patner M. All-atom numerical studies of self-assembly of zwitterionic peptide amphiphiles. J Phys Chem B. 2004;108:15278–84.

    Article  CAS  Google Scholar 

  7. Chen S, Zheng J, Li L, Jiang S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J Am Chem Soc. 2005;127:14473–8.

    Article  CAS  PubMed  Google Scholar 

  8. Schulz DN, Peiffer DG, Agarwal PK, Larabee J, Kaladas JJ, Soni L, et al. Phase behavior and solution properties of sulphobetaine polymers. Polymer. 1986;27(11):1734–42.

    Article  CAS  Google Scholar 

  9. Kamenska E, Kostova B, Ivanov I, Rachev D, Georgiev G. Emulsifier-free emulsion copolymerization of vinyl-acetate and 3-(dimethylmethacryloyloxyethyl) ammonium propane sulfonate and swelling behavior of their copolymer matrices. Macromol React Eng. 2007;1:553–62.

    Article  CAS  Google Scholar 

  10. Kamenska E, Kostova B, Ivanov I, Rachev D, Georgiev G. Synthesis and characterization of zwitterionic co-polymers as matrices for sustained metoprolol tartrate delivery. J Biomater Sci. 2009;20:181–97.

    Article  CAS  Google Scholar 

  11. Kostova B, Kamenska E, Momekov G, Rachev D, Georgiev G, Balashev K. Synthesis and characterization of novel drug delivery nanoparticles based on polyzwitterionic copolymers. Eur Polym J. 2013;49(3):637–45.

    Article  CAS  Google Scholar 

  12. Kostova B, Kamenska E, Rachev D, Simeonova S, Georgiev G, Balashev K. Polyzwitterionic copolymer nanoparticles loaded in situ with metoprolol tartrate: synthesis, morphology and drug release properties. J Polym Res. 2013;20(2):1–8.

    Article  CAS  Google Scholar 

  13. Bushra R, Aslam N. An overview of clinical pharmacology of ibuprofen. Oman Med J. 2010;25(3):155–66.

    PubMed  PubMed Central  Google Scholar 

  14. Win PP, Shin-Ya Y, Hong K, Kajjuch T. Formulation and characterization of pH sensitive drug carrier based on phosphorylated chitosan (PCS). Carbohydr Polym. 2003;53(3):305–10.

    Article  CAS  Google Scholar 

  15. Arica B, Calis S, Atilla P, Durlu NT, Cakar N, Kas HS, et al. In vitro and in vivo studies of ibuprofen-loaded biodegradable alginate beads. J Microencaps. 2005;22(2):153–65.

    Article  CAS  Google Scholar 

  16. Perge L, Robitzer M, Guillemot C, Devoisselle JM, Quignard F, Legrand P. New solid lipid microparticles for controlled ibuprofen release: formulation and characterization study. Int J Pharm. 2012;442(1–2):59–67.

    Article  Google Scholar 

  17. Castelli F, Messina C, Sanpietro MG, Pignatello R, Puglisi G. Eudragit as controlled release system for anti-inflammatory drugs: a comparison between DSC and dialysis experiments. Thermochim Acta. 2003;400:227–34.

    Article  CAS  Google Scholar 

  18. Gryczke А, Schminke S, Maniruzzaman M, Beck J, Douroumis D. Development and evaluation of orally disintegrating tablets (ODTs) containing ibuprofen granules prepared by hot melt extrusion. Colloids Surf B Biointerfaces. 2011;86(2):275–84.

    Article  CAS  PubMed  Google Scholar 

  19. Hornig S, Bunjes H, Heinze T. Preparation and characterization of nanoparticles based on dextran-drug conjugates. J Colloid Interface Sci. 2009;338(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson CJ, Hansford D, Higgins S, Rostron C, Hutcheon GA, Munday DL. Evaluation of ibuprofen-loaded microspheres prepared from novel copolyesters. Int J Pharm. 2007;329:53–61.

    Article  CAS  PubMed  Google Scholar 

  21. Hasan AS, Socha M, Lamprecht A, Ghazouami FE, Sapin A, Hoffman M, et al. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharm. 2007;344:53–61.

    Article  CAS  PubMed  Google Scholar 

  22. Hasan AS, Sapin A, Lamprecht A, Emond E, Ghazouami FE, Maincent P. Composite microparticles with in vivo reduction of the burst release effect. Eur J Pharm Biopharm. 2009;73:337–44.

    Article  Google Scholar 

  23. DeLeon VH, Nguyen TD, Nar M, D’Souza NA, Golden TD. Polymer nanocomposites for improved drug delivery efficiency. Mater Chem Phys. 2012;132:409–15.

    Article  CAS  Google Scholar 

  24. Ye Z, Squillante E. The development and scale-up of biodegradable polymeric nanoparticles loaded with ibuprofen. Colloids and Surf A Physicochem Eng Asp. 2013;422:75–80.

    Article  CAS  Google Scholar 

  25. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16:53–61.

    Article  CAS  PubMed  Google Scholar 

  26. Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X, et al. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine. 2013;8:845–54.

    PubMed  PubMed Central  Google Scholar 

  27. Paavola A, Kilpeläinen I, Yliruusi J, Rosenberg P. Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. Int J Pharm. 2000;199(1):85–93.

    Article  CAS  PubMed  Google Scholar 

  28. Mohammed AR, Weston N, Coombes AG, Fitzgerald M, Perrie Y. Liposome formulation of poorly water soluble drugs: optimization of drug loading and ESEM analysis of stability. Int J Pharm. 2004;285:23–34.

    Article  CAS  PubMed  Google Scholar 

  29. Teschke O, de Souza EF. Liposome structure imaging by atomic force microscopy: verification of improved liposome stability during adsorption of multiple aggregated vesicles. Langmuir. 2002;18:6513–20.

    Article  CAS  Google Scholar 

  30. Momekova D, Momekov G, Ivanova J, Pantchev I, Drakalska E, Stoyanov N, et al. In vitro evaluation of sterically stabilized liposomes as a drug delivery platform for cytotoxic metal coordination compounds of salinomycin. J Drug Del Sci Tech. 2013;23(3):215–23.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to ERC grant to S.K.S., EMATTER (No. 280078), and the National Science Fond for the financial support (project DDVU-02/43).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bistra Kostova or Dilyana Georgieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostova, B., Kamenska, E., Georgieva, D. et al. Design and Concept of Polyzwitterionic Copolymer Microgel Drug Delivery Systems In Situ Loaded with Non-steroidal Anti-inflammatory Ibuprofen. AAPS PharmSciTech 18, 166–174 (2017). https://doi.org/10.1208/s12249-016-0503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0503-5

KEY WORDS

Navigation