Skip to main content
Log in

Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Supercritical fluid technology offers several advantages in preparation of microparticles. These include uniformity in particle size, morphology, and drug distribution without degradation of the product. One of the recent advantages is preparation of porous aerogel carrier with proper aerodynamic properties. In this study, we aimed to prepare chitosan aerogel microparticles using supercritical fluid (SCF) technology and compare that with microparticles produced by freeze drying (FD). Loading the prepared carriers with a model drug (salbutamol) was also performed. Comparisons of the particle properties and physicochemical characterizations were undertaken by evaluating particle size, density, specific surface area, and porosity. In vitro drug release studies were also investigated. The effect of many variables, such as molecular weight of chitosan oligomers, concentrations of chitosan, and concentrations of tripolyphosphate on the release, were also investigated. Chitosan aerogels were efficiently produced by SCF technology with an average particle size of 10 μm with a tapped density values around 0.12 g/mL, specific surface area (73–103) m2/g, and porosity (0.20–0.29) cc/g. Whereas, microparticles produced by FD method were characterized as cryogels with larger particle size (64 microns) with clear cracking at the surface. Sustained release profile was achieved for all prepared microparticles of salbutamol produced by the aforementioned methods as compared with pure drug. The results also demonstrates that chitosan molecular weight, polymer concentration, and tripolyphosphate concentration affected the release profile of salbutamol from the prepared microparticles. In conclusion, SCF technology was able to produce chitosan aerogel microparticles loaded with salbutamol that could be suitable for pulmonary drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmad FJ, Mittal G, Jain GK, Malhotra G, Khar RK, Bhatnagar A. Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur J Pharm Biopharm. 2009;71(2):282–91.

    Article  PubMed  Google Scholar 

  2. Cook. Novel sustained release microspheres for pulmonary drug delivery. J Control Release. 2005;104:79–90.

    Article  CAS  PubMed  Google Scholar 

  3. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Grenha A, Grainger CI, Dailey LA, Seijo B, Martin GP, Remuñán-López C, et al. Chitosan nanoparticles are compatible with respiratory epithelial cells in-vitro. Eur J Pharm Sci. 2007;31(2):73–84.

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Jebria A, Eskew ML, Edwards DA. Inhalation system for pulmonary aerosol drug delivery in rodents using large porous particles. Aerosol Sci Technol. 2000;32(5):421–33.

    Article  CAS  Google Scholar 

  6. Ben-Jebria A, Chen D, Eskew ML, Vanbever R, Langer R, Edwards DA. Large porous particles for sustained protection from carbachol-induced broncho constriction in guinea pigs. Pharm Res. 1999;16:555–61.

    Article  CAS  PubMed  Google Scholar 

  7. Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    Article  CAS  PubMed  Google Scholar 

  8. Tang Q, Wang T. Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying. J Supercrit Fluids. 2005;35(1):91–4.

    Article  CAS  Google Scholar 

  9. García-González CA, Uy JJ, Alnaief M, Smirnova I. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr Polym. 2012;88(4):1378–86.

    Article  Google Scholar 

  10. García-González CA, Alnaief M, Smirnova I. Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym. 2011;86(4):1425–38.

    Article  Google Scholar 

  11. Pierre AC, Pajonk GM. Chemistry of aerogels and their applications. Chem Rev. 2002;102(11):4243–66.

    Article  CAS  PubMed  Google Scholar 

  12. Mehling T, Smirnova I, Guenther U, Neubert R. Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids. 2009;355(50-51):2472–9.

    Article  CAS  Google Scholar 

  13. Buisson P, Hernandez C, Pierre M, Pierre A. Encapsulation of lipases in aerogels. J Non-Cryst Solids. 2001;285(1-3):295–302.

    Article  CAS  Google Scholar 

  14. Schwertfeger F, Zimmermann A, Krempel H, inventors; Hoechst Aktiengesellschaft, assignee. Use of inorganic aerogels in pharmacy. United States patent US 6280744. 2001 Aug 28.

  15. Krukonis V. Supercritical fluids: their proliferation in the pharma industry. Eur Pharmaceutical Contractor (EPC) May 1998.

  16. Martín A, Cocero MJ. Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv Drug Delivery Rev. 2008;60:339–50.

    Article  Google Scholar 

  17. Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Adv Drug Delivery Rev. 2008;60(3):399–410.

    Article  CAS  Google Scholar 

  18. Zougagh M, Valcárcel M, Rıos A. Supercritical fluid extraction: a critical review of its analytical usefulness. TrAC Trends Anal Chem. 2004;23(5):399–405.

    Article  CAS  Google Scholar 

  19. Pasquali I, Bettini R. Are pharmaceutics really going supercritical? Int J Pharm. 2008;364(2):176–87.

    Article  CAS  PubMed  Google Scholar 

  20. Reverchon E, Antonacci A. Chitosan microparticles production by supercritical fluid processing. J Supercrit Fluids. 2006;46(2):5722–8.

    Google Scholar 

  21. Nanda RK, Patil SS, Navathar DA. Chiotsan nanoparticles loaded with thiocolchicoside. Der Pharma Chemica. 2012;4(4):1619–25.

    CAS  Google Scholar 

  22. Kamble MS. Formulation & characterisation of chitosan based microspheres of salbutamol sulphate dry powder inhaler formulation. J Drug Delivery Ther. 2012;2(5):37–41.

    CAS  Google Scholar 

  23. Corrigan DO, Healy AM, Corrigan OI. Preparation and release of salbutamol from chitosan and chitosan co-spray dried compacts and multiparticulates. Eur J Pharm Biopharm. 2006;62(3):295–305.

    Article  CAS  PubMed  Google Scholar 

  24. Obaidat R, Al-Jbour N, Al-Souâ K, Sweidan K, Al-Remawi M, Badwan A. Some physico-chemical properties of low molecular weight chitosans and their relationship to conformation in aqueous solution. J Sol Chem. 2010;39:575–88.

    Article  CAS  Google Scholar 

  25. Dhawade PP, Jagtap RN. Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv Appl Sci Res. 2012;3(3):1372.

    CAS  Google Scholar 

  26. Kouchak M, Avadi M, Abbaspour M, Jahangiri A, Boldaji SK. Effect of different molecular weights of chitosan on preparation and characterization of insulin loaded nanoparticles by ion gelation method. Int J Drug Dev Res. 2012;4:271–7.

    CAS  Google Scholar 

  27. El-Hefian EA, Elgannoudi ES, Mainal A, Yahaya AH. Characterization of chitosan in acetic acid: rheological and thermal studies. Turk J Chem. 2010;34:47–56.

    CAS  Google Scholar 

  28. Dong Y, Ruan Y, Wang H, Zhao Y, Bi D. Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci. 2004;93:1553–8.

    Article  CAS  Google Scholar 

  29. Lazaridou A, Biliaderis CG. Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohydr Polym. 2002;48:179–90.

    Article  CAS  Google Scholar 

  30. Tsioptsias C, Michailof C, Stauropoulos G, Panayiotou C. Chitin and carbon aerogels from chitin alcogels. Carbohydr Polym. 2009;76(4):535–40.

    Article  CAS  Google Scholar 

  31. Kačuráková M, Belton PS, Wilson RH, Hirsch J, Ebringerová A. Hydration properties of xylan-type structures: an FTIR study of xylo oligosaccharides. J Sci Food Agr. 1998;77:38–44.

    Article  Google Scholar 

  32. Cardenas G, Miranda SP. FTIR and TGA studies of chitosan composite films. J Chil Chem Soc. 2004;49:291–5.

    CAS  Google Scholar 

  33. Elhefian EA, Nasef MM, Yahaya AH. Preparation and characterization of chitosan/agar blended films: part 2. thermal, mechanical, and surface properties. J Chem. 2012;9:510–6.

    CAS  Google Scholar 

  34. Bhumkar DR, Pokharkar VB. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech. 2006;7:E138–43.

    Article  PubMed Central  Google Scholar 

  35. Reverchon E, Della Porta G, Pallado P. Supercritical antisolvent precipitation of salbutamol microparticles. Powder Technol. 2001;114(1–3):17–22.

    Article  CAS  Google Scholar 

  36. Nath B, Nath LK, Mazumder B, Kumar P, Sharma N, Sahu BP. Preparation and characterization of salbutamol sulphate loaded ethyl cellulose microspheres using water-in-oil-oil emulsion technique. Iranian J Pharm Res. 2010;9(2):97–105.

    CAS  Google Scholar 

  37. Vatanara A, RouholaminiNajafabadi A, Gilani K, Asgharian R, Darabi M, Rafiee-Tehrani M. A Plackett–Burman design for screening of the operation variables in the formation of salbutamol sulphate particles by supercritical antisolvent. J Supercrit Fluids. 2007;40(1):111–6.

    Article  CAS  Google Scholar 

  38. Jin H, Nishiyama Y, Wada M, Kuga S. Nanofibrillar cellulose aerogels. Colloids Surf A. 2004;240:63–7.

    Article  CAS  Google Scholar 

  39. Honary S, Maleki M, Karami M. The effect of chitosan molecular weight on the properties of alginate/chitosan microparticles containing prednisolone. Trop J Pharm Res. 2009;8:53–61.

    Article  CAS  Google Scholar 

  40. Parize AL, Stulzer HK, Laranjeira MCM, da Costa Brighente IM, de Souza TCR. Evaluation of chitosan microparticles containing curcumin and crosslinked with sodium tripolyphosphate produced by spray drying. Quim Nova. 2012;35:1127–32.

    Article  CAS  Google Scholar 

  41. Berthold A, Cremer K, et al. Influence of crosslinking on the acid stability and physicochemical properties of chitosan microspheres. STP Pharma Sci. 1996;6(5):358–64.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Jordan University of Science and Technology (grant number 13/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana M. Obaidat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obaidat, R.M., Tashtoush, B.M., Bayan, M.F. et al. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles. AAPS PharmSciTech 16, 1235–1244 (2015). https://doi.org/10.1208/s12249-015-0312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0312-2

KEY WORDS

Navigation