AAPS PharmSciTech

, Volume 16, Issue 2, pp 223–233 | Cite as

Targeting Therapeutics Across the Blood Brain Barrier (BBB), Prerequisite Towards Thrombolytic Therapy for Cerebrovascular Disorders—an Overview and Advancements

  • K. K. Pulicherla
  • Mahendra Kumar Verma
Review Article


Cerebral tissues possess highly selective and dynamic protection known as blood brain barrier (BBB) that regulates brain homeostasis and provides protection against invading pathogens and various chemicals including drug molecules. Such natural protection strictly monitors entry of drug molecules often required for the management of several diseases and disorders including cerebral vascular and neurological disorders. However, in recent times, the ischemic cerebrovascular disease and clinical manifestation of acute arterial thrombosis are the most common causes of mortality and morbidity worldwide. The management of cerebral Ischemia requires immediate infusion of external thrombolytic into systemic circulation and must cross the blood brain barrier. The major challenge with available thrombolytic is their poor affinity towards the blood brain barrier and cerebral tissue subsequently. In the clinical practice, a high dose of thrombolytic often prescribed to deliver drugs across the blood brain barrier which results in drug dependent toxicity leading to damage of neuronal tissues. In recent times, more emphasis was given to utilize blood brain barrier transport mechanism to deliver drugs in neuronal tissue. The blood brain barrier expresses a series of receptor on membrane became an ideal target for selective drug delivery. In this review, the author has given more emphasis molecular biology of receptor on blood brain barrier and their potential as a carrier for drug molecules to cerebral tissues. Further, the use of nanoscale design and real-time monitoring for developed therapeutic to encounter drug dependent toxicity has been reviewed in this study.


blood brain barrier (BBB) cerebral ischemic disorders drug delivery earthworm protease neurodegenerative disorder thrombolytic 



The author thanks the Principal and Management, R.V.R. & J.C. College of Engineering (A), Guntur, Andhra Pradesh, India for their support to carry out the research work. Furthermore, my deep gratitude to the Department of Biotechnology, R.V.R. & J.C. College of Engineering (A) for providing facility utilized in the current study.


  1. 1.
    Abbott NJ. Physiology of the blood–brain barrier and its consequences for drug transport to the brain. Int Congr Ser. 2005;1277:3–18.CrossRefGoogle Scholar
  2. 2.
    Jones AR, Shusta EV. Blood–brain barrier transport of therapeutics via receptor mediation. Pharm Res. 2007;24:1759–71.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Cardoso FL, Brites D, Brito MA. Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64:328–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Pardridge WM. Blood–brain barrier drug targeting: the future of brain drug development. Mol Interv. 2003;3:90–105.PubMedCrossRefGoogle Scholar
  6. 6.
    Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood–brain barrier: fact or fantasy? Pharmacol Ther. 2009;123:80–104.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood–brain barrier for imaging and therapeutic applications. Nanoscale. 2014;6(4):2146–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Ji H, Wang L, Bi H, Sun L, Cai B, Wang Y, et al. Mechanisms of lumbrokinase in protection of cerebral ischemia. Eur J Pharmacol. 2008;590:281–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Furlan AJ, Abou-Chebi A. The role of recombinant pro-urokinase (r-pro-UK) and intraarterial thrombolysis in acute ischemic stroke: the PROACT trials. Prolyse in acute cerebral thromboembolism. Curr Med Res Opin. 2002;18 Suppl 2:44–7.CrossRefGoogle Scholar
  11. 11.
    Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005;129(3):307–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Huai Q, Mazar A, Kuo A, Parry GC, Shaw DE, Callahan J, et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science. 2006;311:656–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Edwards MT, Murphy MM, Geraghty JJ, Wulf JA, Konzen JP. Intraarterial cerebral thrombolysis for acute ischemic stroke in a community hospital. AJNR Am J Neuroradiol. 1999;20(9):1682–7.PubMedGoogle Scholar
  15. 15.
    Wu JH, Diamond SL. Tissue plasminogen activator (t-PA) inhibits plasmin degradation of fibrin. A mechanism that slows t-PA-mediated fibrinolysis but does not require alpha 2-antiplasmin or leakage of intrinsic plasminogen. J Clin Invest. 1995;95(6):2483–90.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Rhim T, Lee DY, Lee M. Drug delivery systems for the treatment of ischemic stroke. Pharm Res. 2013;30(10):2429–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Abbott NJ. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today Technol. 2004;1:407–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Mruk DD, Su L, Cheng CY. Emerging role for drug transporters at the blood brain barrier. Trends Pharmacol Sci. 2010;32:99–106.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Palmer AM. The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol Dis. 2010;37:3–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Pardridge WM. Introduction to the blood–brain barrier: methodology, biology, and pathology. Cambridge University PRESS. 1998; 24(9):521–81.Google Scholar
  21. 21.
    Pardridge WM. Blood–brain barrier delivery. Drug Discov Today. 2007;12:54–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Anstrom JA, Brown WR, Moody DM, Thore CR, Challa VR, Block SM. Anatomical analysis of the developing cerebral vasculature in premature neonates: absence of precapillary arteriole to-venous shunts. Pediatr Res. 2002;52:554–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Angelow S, Yu AS. Claudins and paracellular transport: an update. Curr Opin Nephrol Hypertens. 2007;16:459–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Findley MK, Koval M. Regulation and roles for claudin-family tight junction proteins. IUBMB Life. 2009;61(4):431–7.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Abbott NJ, Ronnback L, Hansson E. Astrocyte–endothelial interactions at the blood brain barrier. Nat Rev Neurosci. 2006;7:41–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Pardridge WM. Molecular biology of the blood–brain barrier. Mol Biotechnol. 2005;30:57–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Asotra K, Ningaraj N, Black KL. Measurement of blood–brain and blood-tumor barrier permeabilities with (14C)-labeled tracers. Methods Mol Med. 2003;89:177–90.PubMedGoogle Scholar
  28. 28.
    Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Abulrob A, Sprong H, Bergen Henegouwen PV, Stanimirovic D. The blood–brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005;95:1201–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Schlossauer B, Steuer H. Comparative anatomy, physiology and in vitro models of the blood–brain and blood-retina barrier. Curr Med Chem. 2002;2:175–86.Google Scholar
  31. 31.
    Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011;32:708–14.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Miksys S, Tyndale RF. Brain drug-metabolizing cytochrome P450 enzymes are active in vivo, demonstrated by mechanism-based enzyme inhibition. Neuropsychopharmacology. 2009;34(3):634–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Born J, Lange T, Kern W, Mc-Gregor GP, Bickel U, Fehm HL. Sniffing neuropeptides a transnasal approach to the human brain. Nat Neurosci. 2002;5:514–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Huang CC, Lee CC, Hsu KS. The role of insulin receptor signalling in synaptic plasticity and cognitive function. Chang Gung Med J. 2010;33(2):115–25.PubMedGoogle Scholar
  35. 35.
    Zhang Y, Pardridge WM. Rapid transferrin efflux from brain to blood across the blood–brain barrier. J Neurochem. 2001;76:1597–600.PubMedCrossRefGoogle Scholar
  36. 36.
    Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood–brain barrier: an engineering perspective. Front Neuroeng. 2013;6:1–22.CrossRefGoogle Scholar
  37. 37.
    Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2001;20:77–95.CrossRefGoogle Scholar
  38. 38.
    Allen DD, Lockman PR, Roder KE, Dwoskin LP, Crooks PA. Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood–brain barrier choline transporter. J Pharmacol Exp Ther. 2003;304:1268–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith QR. A review of blood brain barrier transport techniques. Methods Mol Med. 2003;89:193–208.PubMedGoogle Scholar
  40. 40.
    Hawkins RA, O’Kane RL, Simpson IA, Viña JR. Structure of the blood–brain barrier and its role in the transport of amino acids. J Nutr. 2006;136(1):218S–26.PubMedGoogle Scholar
  41. 41.
    Zhao F-Q, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics. 2007;8:113–28.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Augustin R, Carayannopoules MO, Dowd LO, Phay JE, Moley JF, Moley KH. Identification and characterization of human glucose transporter-like protein-9 (GLUT9). J Biol Chem. 2004;279:16229–36.PubMedCrossRefGoogle Scholar
  43. 43.
    Rip J, Schenk GJ, Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv. 2009;6:227–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Gynther M, Laine K, Ropponen J, Leppanen J, Mannila A, Nevalainen T, et al. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem. 2008;51(4):932–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Peura L, Malmioja K, Huttunen K, Leppanen J, Hamalainen M, Forsberg MM, et al. Design, synthesis and brain uptake of LAT1-targeted amino acid prodrugs of dopamine. Pharm Res. 2013;30(10):2523–37.PubMedCrossRefGoogle Scholar
  46. 46.
    Peura L, Malmioja K, Laine K, Leppanen J, Gynther M, Isotalo A, et al. Large amino acid transporter 1 (LAT1) prodrugs of valproic acid: new prodrug design ideas for central nervous system delivery. Mol Pharm. 2011;8(5):1857–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Xiao G, Gan L-S. Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol. 2013;2013, 703545. 14 pages.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Zhang Y, Pardridge WM. Delivery of β-galactosidase to mouse brain via the blood–brain barrier transferrin receptor. J Pharmacol Exp Ther. 2005;313:1075–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Temsamani J, Rousselle C, Rees AR, Scherrmann JM. Vector-mediated drug delivery to the brain. Exp Opin Biol Ther. 2001;1:773–82.CrossRefGoogle Scholar
  50. 50.
    Maresh GA, Maness LM, Zadina JE, Kastin AJ. In vitro demonstration of a saturable transport system for leptin across the blood–brain barrier. Life Sci. 2001;69(1):67–73.PubMedCrossRefGoogle Scholar
  51. 51.
    Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–87.PubMedCrossRefGoogle Scholar
  52. 52.
    Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22(3):225–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Waheed A, Grubb JH, Zhou XY, Tomatsu S, Fleming RE, Costaldi ME, et al. Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci. 2002;99(5):3117–22.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Karsten U, Telli H, Elisabeth H, Jorg K. Transferrin- and transferrin-receptor antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm. 2009;71(2):251–6.CrossRefGoogle Scholar
  55. 55.
    Van Hoof D, Rodenburg KW, Van der Horst DJ. Receptor-mediated endocytosis and intracellular trafficking of lipoproteins and transferrin in insect cells. Insect Biochem Mol Biol. 2005;35(2):117–28.PubMedCrossRefGoogle Scholar
  56. 56.
    Boado RJ, Zhang Y, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol Bioeng. 2007;96(2):381–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Coloma MJ, Lee HJ, Landaw EM, Boado RJ, Morrison SL, Pardridge WM. Transport across the primate blood–brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res. 2000;17(3):266–74.PubMedCrossRefGoogle Scholar
  58. 58.
    Boado RJ, Zhang Y, Zhang Y, Wang Y, Pardridge WM. GDNF fusion protein for targeted-drug delivery across the human blood–brain barrier. Biotech Bioeng. 2007;100:387–96.CrossRefGoogle Scholar
  59. 59.
    Chung NS, Wasan KM. Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv Drug Deliv Rev. 2004;56(9):1315–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Demeule M, Currie JC, Bertrand Y, Che C, Regina A, Gabathuler R, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008;106(4):1534–44.PubMedCrossRefGoogle Scholar
  61. 61.
    May P, Woldt E, Matz RL, Boucher P. The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med. 2007;39(3):219–28.PubMedCrossRefGoogle Scholar
  62. 62.
    Yoon IS, Chen E, Busse T, Repetto E, Lakshmana MK, Koo EH, et al. Low-density lipoprotein receptor-related protein promotes amyloid precursor protein trafficking to lipid rafts in the endocytic pathway. FASEB J. 2007;21:2742–52.PubMedCrossRefGoogle Scholar
  63. 63.
    Harris-White ME, Frautschy SA. Low density lipoprotein receptor-related proteins (LRPs), Alzheimer’s and cognition. Curr Drug Targets CNS Neurol Disord. 2005;4(5):469–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Gaillard PJ, Brink A, Boer AG. Diphtheria toxin receptor-targeted brain drug delivery. Int Congr Ser. 2005;1277:185–95.CrossRefGoogle Scholar
  65. 65.
    Bu G, Maksymovitch EA, Nerbonne JM, Schwartz AL. Expression and function of the low density lipoprotein receptor-related protein (LRP) in mammalian central neuron. J Biochem. 1994;269:18521–8.Google Scholar
  66. 66.
    Raab G, Klagsbrun M. Heparin-binding EGF like growth factor. Biochim Biophys Acta. 1997;1333:F179–99.PubMedGoogle Scholar
  67. 67.
    Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA. Tissue plasminogen activator (t-PA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med. 1998;4(2):228–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Chernyshev OY, Martin-Schild S, Albright KC, Barreto A, Misra V, Acosta Grotta JC, et al. Safety of t-PA in stroke mimics and neuroimaging-negative cerebral ischemia. Neurology. 2010;74(17):1340–5.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Hatcher MA, Starr JA. Role of tissue plasminogen activator in acute ischemic stroke. Ann Pharmacother. 2011;45(3):364–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Cronin CA. Intravenous tissue plasminogen activator for stroke: a review of the ECASS III results in relation to prior clinical trials. J Emerg Med. 2010;38(1):99–105.PubMedCrossRefGoogle Scholar
  71. 71.
    Nakashima T, Minematsu K. Prospects of thrombolytic therapy for acute ischemic stroke. Brain Nerve. 2009;61(9):1003–12.PubMedGoogle Scholar
  72. 72.
    Anderson JL. Development and evaluation of anisoylated plasminogen streptokinase activator complex (APSAC) as a second generation thrombolytic agent. J Am Coll Cardiol. 1987;10(5 Suppl B):22B–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Monk JP, Heel RC. Anisoylated plasminogen streptokinase activator complex (APSAC). A review of its mechanism of action, clinical pharmacology and therapeutic use in acute myocardial infarction. Drugs. 1987;34(1):25–49.PubMedCrossRefGoogle Scholar
  74. 74.
    Collen D. Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat Med. 1998;4(3):279–84.PubMedCrossRefGoogle Scholar
  75. 75.
    Moreadith RW, Collen D. Clinical development of PEGylated recombinant staphylokinase (PEG-Sak) for bolus thrombolytic treatment of patients with acute myocardial infarction. Adv Drug Deliv Rev. 2003;55(10):1337–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Cooper EL, Hrzenjak TM, Grdisa T. Alternative sources of fibrinolytic, anticoagulative, antimicrobial and anticancer molecules. Int J Immunopathol Pharmacol. 2004;17:237–44.PubMedGoogle Scholar
  77. 77.
    Wang F, Wang C, Li M, Gui L, Zhang J, Chang W. Purification, characterization and crystallization of a group of earthworm fibrinolytic enzymes from Eisenia fetida. Biotechnol Lett. 2003;25:1105–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Inoue T, Yaguchi I, Takayangi K, Hayashi T, Moorrks S, Eguchi Y. A new thrombolytic agent, monteplase, is independent of plasminogen activator inhibitor in patients with acute myocardial infarction: comparison with native t-PA E 610. J Am Coll Cardiol. 1997;29:1447–53.CrossRefGoogle Scholar
  79. 79.
    Sun HL, Jiao JD, Pan ZW, Dong DL, Yang FB. The cardio-protective effect and mechanism of lumbrokinase. Yao Xue Xue Bao. 2006;41(3):247–51.PubMedGoogle Scholar
  80. 80.
    Justicia C, Gabriel C, Planas AM. Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia. 2000;30:253–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Katoh M, Karasawa T, Doi H, Odawara A, Takagi M, Ikeo T, et al. Antiplatelet mechanisms of TA-993 and its metabolite MB3 in ADP-induced platelet aggregation. Eur J Pharmacol. 2000;399:91–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Mascareno E, Dhar M, Siddiqui MA. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci. 1998;95:5590–4.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Strong K, Mathers C, Bonita R. Preventing stroke: saving lives around the world. Lancet Neurol. 2007;6:182–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang X, Zhang J, Kuang P, Lang S, Wu W, et al. The effect of lumbrokinase on P-selectin and E-selectin in cerebral ischemia model of rat. J Tradit Chin Med. 2003;23:141–6.PubMedGoogle Scholar
  85. 85.
    Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47(4):462–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003;34(8):e109–37.PubMedCrossRefGoogle Scholar
  87. 87.
    Schellinger PD, Jansen O, Fiebach JB, Heiland S, Steiner T, Schwab S, et al. Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute ischemic stroke with diffusion and perfusion MRI. Stroke. 2000;31(6):1318–28.PubMedCrossRefGoogle Scholar
  88. 88.
    Kuntz M, Mysiorek C, Pétrault O, Petrault M, Uzbekov R, Bordet R, et al. Stroke-induced brain parenchymal injury drives blood–brain barrier early leakage kinetics: a combined in vivo/in vitro study. J Cereb Blood Flow Metab. 2014;34:95–107.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    O’Collins VE, Macleod MR, Donnan GA, Horky LL, Van Der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77.PubMedCrossRefGoogle Scholar
  90. 90.
    Rosenberg N, Chen M, Prabhakaran S. New devices for treating acute ischemic stroke. Recent Pat CNS Drug Discov. 2005;5:118–34.CrossRefGoogle Scholar
  91. 91.
    Dirnagl U. Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci. 2012;1268:21–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Franko J, Pomfy M, Prosbova T, Kimakova T. Temporal kinetics of calcium in neocortical neuronal nuclei after global cerebral ischemia and reperfusion. An ultrastructural study. Sb Lek. 2001;102(2):149–52.PubMedGoogle Scholar
  93. 93.
    Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S. Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther. 2007;322:205–13.PubMedCrossRefGoogle Scholar
  94. 94.
    Avdeef A. Physicochemical profiling (solubility, permeability and charge state). Curr Top Med Chem. 2001;1:277–351.PubMedCrossRefGoogle Scholar
  95. 95.
    Laquintana V. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv. 2009;6(10):1017–32.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Pardridge W. Vector mediated drug delivery to the brain. Adv Drug Deliv Rev. 1999;36:299–321.PubMedCrossRefGoogle Scholar
  97. 97.
    Benedict CR, Refino CJ, Keyt BA, Pakala R, Paoni NF, Thomas GR, et al. New variant of human tissue plasminogen activator (TPA) with enhanced efficacy and lower incidence of bleeding compared with recombinant human TPA. Circulation. 1995;92:3032–40.PubMedCrossRefGoogle Scholar
  98. 98.
    Armstead WM, Riley J, Yarovoi S, Cines DB, Smith DH, Higazi AA. TPA-S481A prevents neurotoxicity of endogenous tPA in traumatic brain injury. J Neurotrauma. 2012;29(9):1794–802.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Graham EM, Sheldon RA, Flock DL, Ferriero DM, Martin LJ, O’Riordan DP, et al. Neonatal mice lacking functional Fas death receptors are resistant to hypoxic-ischemic brain injury. Neurobiol Dis. 2004;17(1):89–98.PubMedCrossRefGoogle Scholar
  100. 100.
    Maier W, Bednorz M, Meister S, Roebroek A, Weggen S, Schmitt U, et al. LRP1 is critical for the surface distribution and internalization of the NR2B NMDA receptor subtype. Mol Neurodegener. 2013;8:25.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Kanwar JR, Sriramoju B, Kanwar RK. Neurological disorders and therapeutics targeted to surmount the blood–brain barrier. Int J Nanomedicine. 2012;7:3259–78.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Pardridge WM. Biopharmaceutical drug targeting to the brain. J Drug Target. 2010;18(3):157–67.PubMedCrossRefGoogle Scholar
  103. 103.
    Ren X, Cui G, Zhao M, Wang C, Peng S. Coordination of thrombolytic pro-ala-lys peptides with Cu (II): leading to nanoscale self-assembly, increase of thrombolytic activity and additional vasodilation. J Phys Chem B. 2008;112(27):8174–80.PubMedCrossRefGoogle Scholar
  104. 104.
    Marsh JN, Hu G, Scott MJ, Zhang H, Goette MJ, Gaffney PJ, et al. A fibrin-specific thrombolytic nanomedicine approach to acute ischemic stroke. Nanomedicine (London). 2011;6(4):605–15.CrossRefGoogle Scholar
  105. 105.
    Marsh JN, Partlow KC, Abendschein DR, Scott MJ, Lanza GM, Wickline SA. Molecular imaging with targeted perfluorocarbon nanoparticles: quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound Med Biol. 2007;33(6):950–8.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Alexandrov AV, Demchuk AM, Burgin WS, Robinson DJ, Grotta JC, CLOTBUST Investigators. Ultrasound-enhanced thrombolysis for acute ischemic stroke: phase I. Findings of the CLOTBUST trial. J Neuroimaging. 2004;14(2):113–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Alexandrov AV. Ultrasound-enhanced thrombolysis for stroke: clinical significance. Eur J Ultrasound. 2002;16(1–2):131–40.PubMedCrossRefGoogle Scholar
  108. 108.
    Alexandrov AV. Ultrasound enhanced thrombolysis for stroke. Int J Stroke. 2005;1(1):26–9.CrossRefGoogle Scholar
  109. 109.
    Eibel B, Rodrigues CG, Giusti II, Nesralla IA, Prates PR, Sant Anna RT, et al. Gene therapy for ischemic heart disease: review of clinical trials. Rev Bras Cir Cardiovasc. 2011;26(4):635–46.PubMedCrossRefGoogle Scholar
  110. 110.
    Masumu M, Hata R. Recent advances in adenovirus-mediated gene therapy for cerebral ischemia. Curr Gene Ther. 2003;3(1):43–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Yenari MA, Dumas TC, Sapolsky RM, Steinberg GK. Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Ann N Y Acad Sci. 2001;939:340–57.PubMedCrossRefGoogle Scholar
  112. 112.
    Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, et al. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab. 2004;24(2):202–11.PubMedCrossRefGoogle Scholar
  113. 113.
    Soler EP, Ruiz VC. Epidemiology and risk factors of cerebral ischemia and ischemic heart diseases: similarities and differences. Curr Cardiol Rev. 2010;6(3):138–49.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    European Stroke Organisation. ESO guidelines for the management of ischaemic stroke. Basel: European Stroke Organisation; 2008.Google Scholar
  115. 115.
    Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci. 2003;4(2):103–212.PubMedCrossRefGoogle Scholar
  116. 116.
    Teeling JL, Perry VH. Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience. 2009;158(3):1062–73.PubMedCrossRefGoogle Scholar
  117. 117.
    Mattson MP, Duan W, Pedersen WA, Culmsee C. Neurodegenerative disorders and ischemic brain diseases. Apoptosis. 2001;6(1–2):69–81.PubMedCrossRefGoogle Scholar
  118. 118.
    Goldstein LB. Modern medical management of acute ischemic stroke. Methodist Debakey Cardiovasc J. 2014;10(2):99–104.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Johnston DCC, Goldstein LB. Clinical carotid endarterectomy decision making: noninvasive vascular imaging versus angiography. Neurology. 2001;56(8):1009–15.PubMedCrossRefGoogle Scholar
  120. 120.
    Albers GW, Caplan LR, Easton JD, Fayad PB, Mohr JP, Saver JL, et al. Transient ischemic attack—proposal for a new definition. N Engl J Med. 2002;347(21):1713–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Kidwell CS, Latour L, Saver JL, Alger JR, Starkman S, Duckwiler G, et al. Thrombolytic toxicity: blood brain barrier disruption in human ischemic stroke. Cerebrovasc Dis. 2008;25(4):338–43.PubMedCrossRefGoogle Scholar
  122. 122.
    Kastrup A, Groschel K, Ringer TM, Redecker C, Cordesmeyer R, Witte OW, et al. Early disruption of the blood–brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke. 2008;39(8):2385–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Johnston SC, Gress DR, Browner WS, Sidney S. Short-term prognosis after emergency department diagnosis of TIA. JAMA. 2000;284(22):2901–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Gorelick PB. The burden and management of TIA and stroke in government-funded healthcare programs. Am J Manage Care. 2009;15(6 Suppl):S177–84.Google Scholar
  125. 125.
    Power A, Epstein D, Cohen D, Bathula R, Devine J, Kar A, et al. Renal impairment reduces the efficacy of thrombolytic therapy in acute ischemic stroke. Cerebrovasc Dis. 2013;35(1):45–52.PubMedCrossRefGoogle Scholar
  126. 126.
    Masrur S, Abdullah AR, Smith EE, Hidalgo R, El-Ghandour A, Rordorf G, et al. Risk of thrombolytic therapy for acute ischemic stroke in patients with current malignancy. J Stroke Cerebrovasc Dis. 2011;20(2):124–30.PubMedCrossRefGoogle Scholar
  127. 127.
    Ross OA, Worrall BB, Meschia JF. Advancing stroke therapeutics through genetic understanding. Curr Drug Targets. 2007;8(7):850–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Robinson T, Zaheer Z, Mistri AK. Thrombolysis in acute ischaemic stroke: an update. Ther Adv Chronic Dis. 2011;2(2):119–31.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomedicine. 2014;9:795–811.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.PubMedCrossRefGoogle Scholar
  131. 131.
    Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx. 2005;2(4):554–71.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Smith WS, Sung G, Saver J, Budzik R, Duckwiler G, Liebeskind DS, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the multi MERCI trial. Stroke. 2008;39:1205–12.PubMedCrossRefGoogle Scholar
  133. 133.
    Penumbra Pivotal Stroke Trial Investigators. The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke. 2009;40:2761–8.CrossRefGoogle Scholar
  134. 134.
    Pereira VM, Gralla J, Davalos A, Bonafé A, Castaño C, Chapot R, et al. Prospective, multicenter, single-arm study of mechanical thrombectomy using solitaire flow restoration in acute ischemic stroke. Stroke. 2013;44(10):2802–7.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Gralla J, Schroth G, Remonda L, Nedeltchev K, Slotboom J, Brekenfeld C. Mechanical thrombectomy for acute ischemic stroke, thrombus–device interaction, efficiency, and complications in vivo. Stroke. 2006;37:3019–24.PubMedCrossRefGoogle Scholar
  136. 136.
    Mijajlovic MD, Pavlovic A, Covickovic-Sternic N. Is sonothrombolysis an effective stroke treatment? J Ultrasound Med. 2013;32:1117–23.PubMedCrossRefGoogle Scholar
  137. 137.
    Rubiera M, Alexandrov AV. Sonothrombolysis in the management of acute ischemic stroke. Am J Cardiovasc Drugs. 2010;10(1):5–10.PubMedCrossRefGoogle Scholar
  138. 138.
    Barlinn K, Alexandrov AV. Sonothrombolysis in ischemic stroke. Curr Treat Options Neurol. 2013;15(2):91–103.PubMedCrossRefGoogle Scholar
  139. 139.
    Ahadi G, Welch CS, Grimm MJ, Fisher DJ, Zadicario E, Ernstrom K, et al. Transcranial sonothrombolysis using high-intensity focused ultrasound: impact of increasing output power on clot fragmentation. J Ther Ultrasound. 2013;1:22.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2015

Authors and Affiliations

  1. 1.Department of BiotechnologyRV R & JC College of Engineering (A)GunturIndia
  2. 2.Center for Bioseparation TechnologyVIT UniversityVelloreIndia

Personalised recommendations