Skip to main content

Advertisement

Log in

Polymeric Micelles for Multi-Drug Delivery in Cancer

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that “prime” solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338–45.

    Article  CAS  PubMed  Google Scholar 

  2. Hainaut P, Plymoth A. Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol. 2013;25:50–1.

    Article  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44(6):2259–65.

    CAS  PubMed  Google Scholar 

  6. Frei 3rd E, Karon M, Levin RH, Freireich EJ, Taylor RJ, Hananian J, et al. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood. 1965;26:642–56.

    PubMed  Google Scholar 

  7. Hersh EM, Carbone PP, Wong VG, Freireich EJ. Inhibition of the primary immune response in man by anti-metabolites. Cancer Res. 1965;25:997–1001.

    CAS  PubMed  Google Scholar 

  8. Canellos GP, Abramson JS, Fisher DC, LaCasce AS. Treatment of favorable, limited-stage Hodgkin’s lymphoma with chemotherapy without consolidation by radiation therapy. J Clin Oncol. 2010;28:1611–5.

    Article  PubMed  Google Scholar 

  9. Canellos GP, Gollub J, Neuberg D, Mauch P, Shulman LN. Primary systemic treatment of advanced Hodgkin’s disease with EVA (etoposide, vinblastine, doxorubicin): 10-year follow-up. Ann Oncol. 2003;14:268–72.

    Article  CAS  PubMed  Google Scholar 

  10. Martoni A, Cacciari N, Angelelli B, Zamagni C, Pannuti F. Chemotherapy of advanced ovarian cancer. Front Biosci. 1997;2:g20–6.

    CAS  PubMed  Google Scholar 

  11. McGuire 3rd WP. Current status of taxane and platinum-based chemotherapy in ovarian cancer. J Clin Oncol. 2003;21:133s-5s.

    Article  Google Scholar 

  12. Rigas JR. Taxane-platinum combinations in advanced non-small cell lung cancer: a review. Oncologist. 2004;9:16–23.

    Article  CAS  PubMed  Google Scholar 

  13. Guarneri V, Conte PF. The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol I. 2004;31:S149–61.

    Article  Google Scholar 

  14. Melisi D, Troiani T, Damiano V, Tortora G, Ciardiello F. Therapeutic integration of signal transduction targeting agents and conventional anti-cancer treatments. Endo-Relat Cancer. 2004;11:51–68.

    Article  CAS  Google Scholar 

  15. Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008;10:208–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs-barriers of translation and solutions. AAPS Pharm Sci. 2014;15:822–3.

    Article  CAS  Google Scholar 

  17. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727.

    PubMed Central  PubMed  Google Scholar 

  18. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–8.

    Article  CAS  PubMed  Google Scholar 

  19. Coors EA, Seybold H, Merk HF, Mahler V. Polysorbate 80 in medical products and nonimmunologic anaphylactoid reactions. Ann Allerg Asthma Im. 2005;95:593–9.

    Article  CAS  Google Scholar 

  20. Shelley WB, Talanin N, Shelley ED. Polysorbate 80 hypersensitivity. Lancet. 1995;345:1312–3.

    Article  CAS  PubMed  Google Scholar 

  21. Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  22. Hu CM, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1:323–34.

    Article  CAS  PubMed  Google Scholar 

  23. Lee JH, Nan A. Combination drug delivery approaches in metastatic breast cancer. J Drug Deliv. 2012;2012:915375.

    PubMed Central  PubMed  Google Scholar 

  24. Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 2012;17:1044–52.

    Article  CAS  PubMed  Google Scholar 

  25. Batist G, Gelmon KA, Chi KN, Miller WH, Chia SKL, Mayer LD, et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res. 2009;15:692–700.

    Article  CAS  PubMed  Google Scholar 

  26. Lancet JE, Cortes JE, Hogge DE, Tallman MS, Kovacsovics TJ, Damon LE, et al. Phase II, multicenter, randomized, open label trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus cytarabine and daunorubicin in patients with untreated AML 60–75 years of age. Blood. 2014;123:3239–46.

    Article  CAS  PubMed  Google Scholar 

  27. Greco F, Vicent MJ, Gee S, Jones AT, Gee J, Nicholson RI, et al. Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J Control Release. 2007;117:28–39.

    Article  CAS  PubMed  Google Scholar 

  28. Sengupta S, Eavarone D, Capila I, Zhao GL, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436:568–72.

    Article  CAS  PubMed  Google Scholar 

  29. Tekade RK, Dutta T, Gajbhiye V, Jain NK. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul. 2009;26:287–96.

    Article  CAS  PubMed  Google Scholar 

  30. Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharma Des. 2006;12:4669–84.

    Article  CAS  Google Scholar 

  31. Jones M, Leroux J. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.

    Article  CAS  PubMed  Google Scholar 

  32. Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71:227–34.

    Article  CAS  Google Scholar 

  33. Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug. 2003;20:357–403.

    Article  CAS  Google Scholar 

  34. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32:962–90.

    Article  CAS  Google Scholar 

  35. Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliver Rev. 1996;71:227–34.

    Google Scholar 

  36. Sutton D, Wang S, Nasongkla N, Gao J, Dormidontova EE. Doxorubicin and beta-lapachone release and interaction with micellar core materials: experiment and modeling. Exp Biol Med. 2007;232:1090–9.

    Article  CAS  Google Scholar 

  37. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.

    Article  CAS  PubMed  Google Scholar 

  38. Batrakova EV, Bronich TK, Vetro JA, Kabanov AV. Polymeric micelles as drug carriers. In: Torchilin VP, editor. Nanoparticulates as drug carriers. London: World Scientific; 2006. p. 63–7.

    Google Scholar 

  39. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.

    Article  CAS  PubMed  Google Scholar 

  40. Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv. 2010;7:49–62.

    Article  CAS  PubMed  Google Scholar 

  41. Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100:572–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108:241–50.

    Article  CAS  PubMed  Google Scholar 

  43. Matsumura Y. The drug discovery by nanomedicine and its clinical experience. Jpn J Clin Oncol. 2014;44:515–25.

    Article  PubMed  Google Scholar 

  44. Cho H, Lai TC, Kwon GS. Poly(ethylene glycol)-block-poly(epsilon-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release. 2013;166:1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hasenstein JR, Shin HC, Kasmerchak K, Buehler D, Kwon GS, Kozak KR. Antitumor activity of Triolimus: a novel multidrug-loaded micelle containing paclitaxel, rapamycin, and 17-AAG. Mol Cancer Ther. 2012;11:2233–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Shin HC, Alani AW, Cho H, Bae Y, Kolesar JM, Kwon GS. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharm. 2011;8:1257–65.

    Article  CAS  PubMed  Google Scholar 

  47. Shin HC, Cho H, Lai TC, Kozak KR, Kolesar JM, Kwon GS. Pharmacokinetic study of 3-in-1 poly(ethylene glycol)-block-poly(d,l-lactic acid) micelles carrying paclitaxel, 17-allylamino-17-demethoxygeldanamycin, and rapamycin. J Control Release. 2012;163:93–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bae Y, Diezi TA, Zhao A, Kwon GS. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release. 2007;122:324–30.

    Article  CAS  PubMed  Google Scholar 

  49. Bae Y, Alani AWG, Rockich NC, Lai TSZC, Kwon GS. Mixed pH-sensitive polymeric micelles for combination drug delivery. Pharm Res-Dordr. 2010;27:2421–32.

    Article  CAS  Google Scholar 

  50. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    Article  CAS  PubMed  Google Scholar 

  51. Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliver Rev. 2009;61:1203–13.

    Article  CAS  Google Scholar 

  52. Na HS, Lim YK, Jeong YI, Lee HS, Lim YJ, Kang MS, et al. Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int J Pharm. 2010;383:192–200.

    Article  CAS  PubMed  Google Scholar 

  53. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32:8281–90.

    Article  CAS  PubMed  Google Scholar 

  54. Han Y, He Z, Schulz A, Bronich TK, Jordan R, Luxenhofer R, et al. Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol Pharm. 2012;9:2302–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Chitkara D, Singh S, Kumar V, Danquah M, Behrman SW, Kumar N, et al. Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol Pharm. 2012;9:2350–7.

    CAS  PubMed  Google Scholar 

  56. Katragadda U, Teng Q, Rayaprolu BM, Chandran T, Tan C. Multi-drug delivery to tumor cells via micellar nanocarriers. Int J Pharm. 2011;419:281–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Desale SS, Cohen SM, Zhao Y, Kabanov AV, Bronich TK. Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. J Control Release. 2013;171:339–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Cho H, Kwon GS. Thermosensitive poly-(d, l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d, l-lactide-co-glycolide) hydrogels for multi-drug delivery. J Drug Target. 2014;22:669–77.

    Article  CAS  PubMed  Google Scholar 

  59. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Jang SH, Wientjes MG, Lu D, Au JL. Drug delivery and transport to solid tumors. Pharm Res. 2003;20:1337–50.

    Article  CAS  PubMed  Google Scholar 

  61. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.

    Article  CAS  PubMed  Google Scholar 

  62. Lu D, Wientjes MG, Lu Z, Au JL. Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther. 2007;322:80–8.

    Article  CAS  PubMed  Google Scholar 

  63. Ait-Oudhia S, Straubinger RM, Mager DE. Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nanocarrier deposition and efficacy. J Pharmacol Exp Ther. 2013;344:103–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Cho H, Kwon GS. Polymeric micelles for neoadjuvant cancer therapy and tumor-primed optical imaging. ACS Nano. 2011;5:8721–9.

    Article  CAS  PubMed  Google Scholar 

  65. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6:815–23.

  66. Yap TA, Omlin A, de Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol. 2013;31:1592–605.

    Article  CAS  PubMed  Google Scholar 

  67. Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer. 2006;6:546–58.

    Article  CAS  PubMed  Google Scholar 

  68. Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials. 2007;28:5581–93.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by Global Innovative Research Center program of the National Research Foundation of Korea and by the Intramural Research Program (Global RNAi Carrier Initiative) of Korean Institute of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunah Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Lai, T.C., Tomoda, K. et al. Polymeric Micelles for Multi-Drug Delivery in Cancer. AAPS PharmSciTech 16, 10–20 (2015). https://doi.org/10.1208/s12249-014-0251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0251-3

KEY WORDS

Navigation