Skip to main content

Advertisement

Log in

Swellable Ciprofloxacin-Loaded Nano-in-Micro Hydrogel Particles for Local Lung Drug Delivery

  • Research Article
  • Theme: Advances in Formulation and Device Technologies for Pulmonary Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Incorporation of drug-loaded nanoparticles into swellable and respirable microparticles is a promising strategy to avoid rapid clearance from the lung and achieve sustained drug release. In this investigation, a copolymer of polyethylene glycol grafted onto phthaloyl chitosan (PEG-g-PHCs) was synthesized and then self-assembled with ciprofloxacin to form drug-loaded nanoparticles. The nanoparticles and free drug were encapsulated into respirable and swellable alginate micro hydrogel particles and assessed as a novel system for sustained pulmonary drug delivery. Particle size, morphology, dynamic swelling profile, and in vitro drug release were investigated. Results showed that drug-loaded nanoparticles with size of 218 nm were entrapped into 3.9-μm micro hydrogel particles. The dry nano-in-micro hydrogel particles exhibited a rapid initial swelling within 2 min and showed sustained drug release. Preliminary in vivo pharmacokinetic studies were performed with formulations delivered to rats by intratracheal insufflation. Ciprofloxacin concentrations in plasma and in lung tissue and lavage were measured up to 7 h. The swellable particles showed lower ciprofloxacin levels in plasma than the controlled group (a mixture of lactose with micronized ciprofloxacin), while swellable particles achieved higher concentrations in lung tissue and lavage, indicating the swellable particles could be used for controlling drug release and prolonging lung drug concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Geller DE. Aerosol antibiotics in cystic fibrosis. Respir Care. 2009;54:658–70.

    Article  PubMed  Google Scholar 

  2. Pilcer G, Sebti T, Amighi K. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm Res. 2006;23:931–40.

    Article  CAS  PubMed  Google Scholar 

  3. Weers JG, Bell J, Chan HK, Cipolla D, Dunbar C, Hickey AJ, et al. Pulmonary formulations: what remains to be done? J Aerosol Med Pulm Drug Deliv. 2010;23:S5–23.

    Article  CAS  PubMed  Google Scholar 

  4. Yang Y, Tsifansky MD, Wu CJ, Yang HI, Schmidt G, Yeo Y. Inhalable antibiotic delivery using a dry powder co-delivering recombinant deoxyribonuclease and ciprofloxacin for treatment of cystic fibrosis. Pharm Res. 2010;27:151–60.

    Article  CAS  PubMed  Google Scholar 

  5. Stass H, Weimann B, Nagelschmitz J, Rolinck-Werninghaus C, Staab D. Tolerability and pharmacokinetic properties of ciprofloxacin dry powder for inhalation in patients with cystic fibrosis: a phase I, randomized, dose-escalation study. Clin Ther. 2013;35:1571–81.

    Article  CAS  PubMed  Google Scholar 

  6. Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. Lancet Respir Med. 2013;1:402–13.

    Article  CAS  PubMed  Google Scholar 

  7. Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009;29:196–212.

    Article  CAS  PubMed  Google Scholar 

  8. Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J. 1999;13:1177–88.

    Article  CAS  PubMed  Google Scholar 

  9. El-Sherbiny IM, McGill S, Smyth HD. Swellable microparticles as carriers for sustained pulmonary drug delivery. J Pharm Sci. 2010;99:2343–56.

    CAS  PubMed  Google Scholar 

  10. Wanakule P, Liu GW, Fleury AT, Roy K. Nano-inside-micro: disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung. J Control Release. 2012;162:429–37.

    Article  CAS  PubMed  Google Scholar 

  11. Du J, Du P, Smyth HD. Hydrogels for controlled pulmonary delivery. Ther Deliv. 2013;4:1293–305.

    Article  CAS  PubMed  Google Scholar 

  12. Dellamary LA, Tarara TE, Smith DJ, Woelk CH, Adractas A, Costello ML, et al. Hollow porous particles in metered dose inhalers. Pharm Res. 2000;17:168–74.

    Article  CAS  PubMed  Google Scholar 

  13. Mansour HM, Rhee YS, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009;4:299–319.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rytting E, Nguyen J, Wang X, Kissel T. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv. 2008;5:629–39.

    Article  CAS  PubMed  Google Scholar 

  15. El-Sherbiny IM, Smyth HD. Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. Int J Pharm. 2010;395:132–41.

    Article  CAS  PubMed  Google Scholar 

  16. Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci. 1986;75:433–8.

    Article  CAS  PubMed  Google Scholar 

  17. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67–74.

    Article  CAS  PubMed  Google Scholar 

  18. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci U S A. 2002;99:12001–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Selvam P, El-Sherbiny IM, Smyth HD. Swellable hydrogel particles for controlled release pulmonary administration using propellant-driven metered dose inhalers. J Aerosol Med Pulm Drug Deliv. 2011;24:25–34.

    Article  CAS  PubMed  Google Scholar 

  20. El-Sherbiny IM, Smyth HD. Poly (ethylene glycol)–carboxymethyl chitosan-based pH-responsive hydrogels: photo-induced synthesis, characterization, swelling, and in vitro evaluation as potential drug carriers. Carbohydr Res. 2010;345:2004–12.

    Article  CAS  PubMed  Google Scholar 

  21. El-Sherbiny IM, Smyth HD. Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol Pharm. 2011;9:269–80.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kim DH, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials. 2006;27:3031–7.

    Article  CAS  PubMed  Google Scholar 

  23. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gåserød O, Smidsrød O, Skjåk-Bræk G. Microcapsules of alginate-chitosan—I: a quantitative study of the interaction between alginate and chitosan. Biomaterials. 1998;19:1815–25.

    Article  PubMed  Google Scholar 

  25. Sechriest VF, Miao YJ, Niyibizi C, Westerhausen-Larson A, Matthew HW, Evans CH, et al. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res. 2000;49:534–41.

    Article  CAS  PubMed  Google Scholar 

  26. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62:83–99.

    Article  CAS  PubMed  Google Scholar 

  27. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6:623–33.

    Article  CAS  PubMed  Google Scholar 

  28. Sikorski P, Mo F, Skjåk-Bræk G, Stokke BT. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromolecules. 2007;8:2098–103.

    Article  CAS  PubMed  Google Scholar 

  29. Chan G, Mooney DJ. Ca2+ released from calcium alginate gels can promote inflammatory responses in vitro and in vivo. Acta Biomater. 2013;9:9281–91.

    Article  CAS  PubMed  Google Scholar 

  30. Orive G, Ponce S, Hernández RM, Gascón AR, Igartua M, Pedraz JL. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials. 2002;23:3825–31.

    Article  CAS  PubMed  Google Scholar 

  31. Soon-Shiong P, Otterlie M, Skjak-Braek G, Smidsrod O, Heintz R, Lanza RP, et al. An immunologic basis for the fibrotic reaction to implanted microcapsules. Transplant Proc. 1991;23:758–9.

    CAS  PubMed  Google Scholar 

  32. Clayton HA, London NJ, Colloby PS, Bell PR, James RF. The effect of capsule composition on the biocompatibility of alginate-poly-1-lysine capsules. J Microencapsul. 1991;8:221–33.

    Article  CAS  PubMed  Google Scholar 

  33. Otterlei M, Østgaard K, Skjåk-Bræk G, Smidsrød O, Soon-Shiong P, Espevik T. Induction of cytokine production from human monocytes stimulated with alginate. J Immunother. 1991;10:286–91.

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann U, Klöck G, Federlin K, Hannig K, Kowalski M, Bretzel RG, et al. Production of mitogen‐contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis. 1992;13:269–74.

    Article  CAS  PubMed  Google Scholar 

  35. Lee J, Lee KY. Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharm Res. 2009;26:1739–44.

    Article  CAS  PubMed  Google Scholar 

  36. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276:1868–71.

    Article  CAS  PubMed  Google Scholar 

  37. Lin CE, Deng Jr Y, Liao WS, Sun SW, Lin WY, Chen CC. Electrophoretic behavior and pKa determination of quinolones with a piperazinyl substituent by capillary zone electrophoresis. J Chromatogr A. 2004;1051:283–90.

    Article  CAS  PubMed  Google Scholar 

  38. Smyth HD, Hickey AJ. Carriers in drug powder delivery. Am J Drug Deliv. 2005;3:117–32.

    Article  CAS  Google Scholar 

  39. Sung JC, Padilla DJ, Garcia-Contreras L, Verberkmoes JL, Durbin D, Peloquin CA, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009;26:1847–55.

    Article  CAS  PubMed  Google Scholar 

  40. Wang YB, Watts AB, Peters JI, Liu S, Batra A, Williams III RO. In vitro and in vivo performance of dry powder inhalation formulations: comparison of particles prepared by thin film freezing and micronization. AAPS PharmSciTech. 2014. doi:10.1208/s12249-014-0126-7.

    Google Scholar 

  41. Zhang J, Wu L, Chan HK, Watanabe W. Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev. 2011;63:441–55.

    Article  CAS  PubMed  Google Scholar 

  42. Olsson B, Bondesson E, Borgstrom L, et al. Pulmonary drug metabolism, clearance, and absorption. In: Smyth HD, Hickey AJ, editors. Controlled pulmonary drug delivery. New York: Springer; 2011. p. 21–50. doi:10.1007/978-1-4419-9745-6.

    Chapter  Google Scholar 

Download references

ACKNOWLEDGMENTS

Research reported in this publication was supported by the National Heart, Lung, and Blood Institute, National Institute of Environmental Health Sciences, and National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award numbers of R21HL092812 and R03EB006892. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ibrahim M. El-Sherbiny or Hugh D. Smyth.

Additional information

Guest Editors: Paul B. Myrdal and Steve W. Sein

Ju Du and Ibrahim M. El-Sherbiny had contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., El-Sherbiny, I.M. & Smyth, H.D. Swellable Ciprofloxacin-Loaded Nano-in-Micro Hydrogel Particles for Local Lung Drug Delivery. AAPS PharmSciTech 15, 1535–1544 (2014). https://doi.org/10.1208/s12249-014-0176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0176-x

KEY WORDS

Navigation