Synthesis of a Semi-Interpenetrating Polymer Network as a Bioactive Curcumin Film

Abstract

This study focused on the synthesis and characterization of a natural polymeric system employing the interpenetrating polymer network (IPN) comprising curcumin as a bioactive. Biopolymers and actives such as chitosan, hypromellose, citric acid, genipin, and curcumin were used to develop an effective, biodegradable, and biocompatible film employed therapeutically as a wound healing platform. The semi-IPN films were investigated for their physicochemical, physicomechanical, and biological properties by quantification by FTIR, DSC, and Young’s modulus. Following characterization, an optimum candidate formulation was produced whereby further in vitro and ex vivo studies were performed. Results revealed a burst release occurring at the first hour with 1.1 mg bioactive released when in contact with the dissolution medium and 2.23 mg due to bioactive permeation through the skin, thus suggesting that the lipophilic nature of skin greatly impacted the bioactive release rate. Furthermore, chemical and mechanical characterization and tensile strength analysis revealed that the degree of crosslinking and concentration of polymeric material used significantly influenced the properties of the film.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Boatang JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems. A review. J Pharm Sci. 2008;97(8):2892–900.

    Article  Google Scholar 

  2. 2.

    Abdelrahman T, Newton H. Wound dressings: principles and practice. Surgery (oxford). 2011;29:491–5.

    Article  Google Scholar 

  3. 3.

    Atiyeh BS, Hayek SN, Gunn SW. New technologies for burn wound closure and healing; review of the literature. Burns. 2005;31:944–56.

    PubMed  Article  Google Scholar 

  4. 4.

    Singer AJ, Dagum AB. Current management of acute cutaneous wounds. N Engl J Med. 2008;359:1037–46.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Tanihara Y, Suzuki Y, Nishmura Y, Suzuki K, Kakimara Y. Thrombin sensitive peptide linkers for biological signal responsive drug release systems. Peptides. 1998;19:421–5.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Suzuki Y, Tanihara M, Nishmura Y, Suzuki K, Kakimara Y, Shimizu Y. A novel wound dressing with an antibiotic delivery system stimulated by microbial infection. ASA10 J. 1997;43:854–7.

    Google Scholar 

  7. 7.

    Kim HJ, Choi EJ, Oh JS, Lee HC, Park SS, Cho CS. Possibility of wound dressing using poly(L-Leucin)/poly(ethylene glycol)/poly(L-Leucin) triblock copolymer. Biomaterials. 2000;21:131–41.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Hashimoto T, Suzuki Y, Tanihara M, Kakimara Y, Suzuki K. Development of alginate wound dressings linked with hybrid peptides derived from laminin and elastin. Biomaterials. 2004;25:1407–14.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS. Study on gelatine containing artificial skin. I Preparations and characteristics of novel gelatine-alginate sponge. Biomaterials. 1999;20:409–17.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Ma L, Gao C, MaO Z, Zhou J, Shen J, Hu X, et al. Collagen/chitosan porous scaffolds with improvised biostability for skin tissue engineering. Biomaterials. 2003;24:4833–41.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Li X, Chen J, Zhang B, Li M, Diao K, Zhong Z, et al. In-situ injectable nano-composite hydrogel composed of curcumin, N,O-Carboxymethyl chitosan and oxidised alginate for wound healing applications. Int J Pharm. 2012;437:110–9.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Muzarelli RA, Guerrieri M, Goteri G, Muzarelli C, Armeni T, Ghiselli R, et al. The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials. 2005;26:5844–54.

    Article  Google Scholar 

  13. 13.

    Kim BS, Gao H, Argum AA, Matyjaszewski K, Hammond P. All star polymer multilayers as pH responsive nanofilms. Macromolecules. 2009;42:368–75.

    CAS  Article  Google Scholar 

  14. 14.

    Crowder ML, Gooding CH. Spiral wound, hollow fibre membrane modules: a new approach to higher mass transfer efficiency. J Membrane Sci. 1997;137:17–29.

    CAS  Article  Google Scholar 

  15. 15.

    Hwang JJ, Stupp SI. Poly(amino acid) bioadhesives for tissue repair. J Biomater Sci Polymer. 2000;11:1023–38.

    CAS  Article  Google Scholar 

  16. 16.

    Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36:981–1014.

    CAS  Article  Google Scholar 

  17. 17.

    Datta HS, Mitra SK, Partwarden B. Wound healing activity of topical application forms based on Ayurvedav. Evid Based Complement Alternat Med. 2011;2011:134378.

    PubMed Central  PubMed  Google Scholar 

  18. 18.

    Ponnusamy S, Zinjarde S, Bhargava S, Rajamohanan PR, Ravikumar A. Discovering bisdemethoxycurcumin from Curcuma longa rhizome as a potent small molecule inhibitor of human pancreatic a-amylase, a target for type-2 diabetes. Food Chem. 2012;135:2638–42.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Kurup VP, Barrios CS. Immunomodulatory effects of curcumin in allergy. Mole NutrI and Food Res. 2008;52:1031–9.

    CAS  Article  Google Scholar 

  20. 20.

    Adaramoye OA, Anjos RM, Almeida MM, Veras RC, Silvia DF, Oliviera FA, et al. Hypotensive and endothelium-independent vasorelaxant effects of methanolic extract from Curcuma longa L in rats. J Ethnopharmacol. 2009;124:457–62.

    PubMed  Article  Google Scholar 

  21. 21.

    Dao TT, Nguyen PH, Wonb HK, Kim EH, Park J, Wond BY, et al. Curcuminoids from Curcuma longa and their inhibitory activities on influenza A Neuraminidases. Food Chem. 2012;134(1):21–8.

    CAS  Article  Google Scholar 

  22. 22.

    Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Pathaik GK, Srimal RC, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998;6(2):167–77.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Mani H, Sidhu GS, Kumari R, Gaddipati JP, Seth P, Maheshwari RK. Curcumin differentially regulates TGF-β1, its receptors and nitric oxide synthase during impaired wound healing. Biofactors. 2002;16:29–43.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Topham J. Why do some cavity wounds treated with honey or sugar paste heal without scarring. J Wound Care. 2002;11(2):53–5.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Beppu MM, Vieira RS, Aimoli CG, Santana CC. J Membr Sci. 2007;301:126.

    CAS  Article  Google Scholar 

  26. 26.

    Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA. Anal Chem. 2009;81:5364.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Singh A, Narvi S, Dutta P, Pandey N. Bull Mater Sci. 2006;29:233.

    CAS  Article  Google Scholar 

  28. 28.

    Machado MO, Lopes ECN, Sousa KS, Airoldi C. Carbohydr Polym. 2009;77:760.

    CAS  Article  Google Scholar 

  29. 29.

    Pujana MA, Perez-Alverez L, Iturbe LCC, Katime I. Biodegradible chitosan nanogels crosslinked with genipin. Carbohydr Polym. 2013;94(2):836–42.

    Article  Google Scholar 

  30. 30.

    Gao L, Gan H, Meng Z, Gu R, Wu Z, Zhang L, et al. Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids Surf B: Biointerfaces. 2014;117:398–405.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Yan LP, Wang YJ, Ren L, Wu G, Caridade SG, Fan JB, et al. Genipin crosslinked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res Part A. 2010;95A:2.

    Article  Google Scholar 

  32. 32.

    Huang LLH, Sung HW, Tsai CC, Huang DM. Biocompatibility studies of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res. 1998;42:568–76.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Mi FL, Tan YC, Liang HF, Sung HW. In vivo biocompatibility and degradability of a novel injectable-chitosan-based-implant. Biomaterials. 2002;23:181–91.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Wu W, Liu J, Cao S, Tan H, Li J, Xu F, et al. Drug release behaviour of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly (vinylalcohol) and star poly (2-dimethyl amino) ethyl mecrylate. Int J Pharm. 2011;416(1):104–9.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Zhang JT, Huang SW, Zhuo RX. Temperature sensitive polyamidoamine dendrimer/poly (N-isopropyl/acrylamide) hydrogels with improved responsive properties. Macromolecules, Biosc. 2004;4:575–8.

    CAS  Article  Google Scholar 

  36. 36.

    Yao F, Xu LQ, Fu GD, Lin BP. Sliding graft interpenetrating polymer network from simultaneous “click chemistry” and atom transfer radical polymerisation. Macromolecules. 2010;43:9761–70.

    CAS  Article  Google Scholar 

  37. 37.

    Liu YY, Fan XD, Wei BR, Si QF, Chen WX, Sun L. Ph responsive amphillic hydrogel networks with IPN structure: a strategy for controlled drug release. Int J Pharm. 2006;308:205–9.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Saimani S, Dal-Cin MM, Kumar A, Kingston DM. Separation performance of asymmetric membranes based on PEGDa/PEI semi-interpenetrating polymer network in pure and binary gas mixtures of CO2, N2 and CH2. J Membr Sci. 2010;362:353–9.

    CAS  Article  Google Scholar 

  39. 39.

    Bindu TVL, Vidyavathi M, Kavitha K, Sastry TP, Suresh Kumar RV. Preparation and evaluation of chitosan-gelatin composite films for wound healing activity. Trends Biomater Artif Organs. 2010;24(3):123–30.

    Google Scholar 

  40. 40.

    Kim IY, Yoo MK, Seo JH, Park SS, Na H, Lee HC, et al. Evaluation of semi-interpenetrating polymer networks composed of chitosan and polyxamer for wound dressing applications. Int J Pharm. 2007;341:35–43.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Shaikh RP, Kumar P, Choonara YE, du Toit LC, Pillay V. Crosslinked electrospun nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition. Biofabrication. 2012;4:025002. 21 pp.

    PubMed  Article  Google Scholar 

  42. 42.

    Amnuaikit C, Ikeuchi I, Ogawara K-I, Higaki K, Kimura T. Skin permeation of propranolol from polymeric film containing terpene enhancers for transdermal use. Int J Pharm. 2005;289:167–78.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Davies DJ, Ward RJ, Heylings JR. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol in Vitro. 2003;18:351–8.

    Article  Google Scholar 

  44. 44.

    Sarasam A, Madihally SV. Characterisation of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials. 2005;26(27):5500–8.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Zhao QS, Ji QX, Xing K, Li XY, Liu CS, Chen XG. Preparation and characteristics of novel porous hydrogel films based on chitosan and glycerophosphate. Carbohydr Polym. 2009;76:410–6.

    CAS  Article  Google Scholar 

  46. 46.

    Bhuvaneshwari S, Sruthi D, Sivasubramanian V, Niranjana K, Sugunabai J. Development and characterization of chitosan films. Int J Eng Res and Appl (IJERA). 2000;1(2):292–9.

    Google Scholar 

  47. 47.

    Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428:143–51.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Boatang JS, Pawar HV, Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm. 2013;441(1–2):181–91.

    Article  Google Scholar 

  49. 49.

    Sung JH, Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, et al. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm. 2010;392:232–40.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Queen D, Gaylor JDS, Evans JH, Courtney JM, Reid WH. The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials. 1987;8:367–71.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Pakravan MP, Heuzey MC, Ajji A. A fundamental study of Chitosan/PEO electrospinning. Polymer. 2011;52:4813–24.

    CAS  Article  Google Scholar 

  52. 52.

    Barnes HA, Walter K. The yield stress myth? Rheol Acta. 1985;24:323–6.

    CAS  Article  Google Scholar 

  53. 53.

    Pawar HV, Tetteh J, Boateng JS. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B: Biointerfaces. 2013;102:102–10.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Zhao YS, Lu CT, Zhang Y, Xiao J, Zhao YP, Tian JL, et al. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery. Int J Pharm. 2013;454:302–9.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Scheuplein RJ. Permeability of the skin. Handbook of physiology, Reactions to environmental agents. 2011; doi: 10.1002/cphy.cp090119.

  56. 56.

    Seetharaman S, Natesan S, Stowers RS, Mullens C, Baer DG, Suggs LG, et al. A PEGylated fibrin-based wound dressing with antimicrobial and angiogenic activity. Acta Biomater. 2011;7:2787–96.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Rana V, Babita K, Goyal D, Tiwary AK. Soduim citrate crosslinked chitosan films: optimisation and substitute for human/rat/rabbit epidermal sheets. J Pharm Pharmaceut Sci. 2005;8(1):10–7.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Research Foundation (NRF) of South Africa.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mayet, N., Kumar, P., Choonara, Y.E. et al. Synthesis of a Semi-Interpenetrating Polymer Network as a Bioactive Curcumin Film. AAPS PharmSciTech 15, 1476–1489 (2014). https://doi.org/10.1208/s12249-014-0170-3

Download citation

KEY WORDS

  • biomaterials
  • crosslinker
  • curcumin
  • films
  • semi-interpenetrating polymer network
  • wound healing