Skip to main content

Advertisement

Log in

Optimization of Dexamethasone Mixed Nanomicellar Formulation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop a clear aqueous mixed nanomicellar formulation (MNF) of dexamethasone utilizing both d-α-tocopherol polyethylene glycol-1000 succinate (Vit E TPGS) and octoxynol-40 (Oc-40). In this study, Vit E TPGS and Oc-40 are independent variables. Formulations were prepared following solvent evaporation method. A three level full-factorial design was applied to optimize the formulation based on entrapment efficiency, size, and polydispersity index (PDI). A specific blend of Vit E TPGS and Oc-40 at a particular wt% ratio (4.5:2.0) produced excellent drug entrapment, loading, small mixed nanomicellar size and narrow PDI. Solubility of DEX in MNF is improved by ~6.3-fold relative to normal aqueous solubility. Critical micellar concentration (CMC) for blend of polymers (4.5:2.0) was found to be lower (0.012 wt%) than the individual polymers (Vit E TPGS (0.025 wt%) and Oc-40 (0.107 wt%)). No significant effect on mixed nanomicellar size and PDI with one-factor or multi-factor interactions was observed. Qualitative 1H NMR studies confirmed absence of free drug in the outer aqueous MNF medium. MNF appeared to be highly stable. Cytotoxicity studies on rabbit primary corneal epithelial cells did not indicate any toxicity suggesting MNF of dexamethasone is safe and suitable for human topical ocular drops after further in vivo evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig 8

Similar content being viewed by others

REFERENCES

  1. Kim DH, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials. 2006;27(15):3031–7.

    Article  CAS  PubMed  Google Scholar 

  2. Einar Stefansson TL. Cyclodextrins in eye drop formulations. J Incl Phenom Macrocycl Chem. 2002;44:23–7.

    Article  Google Scholar 

  3. Chang DT, Herceg MC, Bilonick RA, Camejo L, Schuman JS, Noecker RJ. Intracameral dexamethasone reduces inflammation on the first postoperative day after cataract surgery in eyes with and without glaucoma. Clin Ophthalmol. 2009;3:345–55.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Capone Jr A, Singer MA, Dodwell DG, Dreyer RF, Oh KT, Roth DB, et al. Efficacy and safety of two or more dexamethasone intravitreal implant injections for treatment of macular edema related to retinal vein occlusion (Shasta study). Retina. 2014;34(2):342–51.

    Article  CAS  PubMed  Google Scholar 

  5. Sivaprasad S, McCluskey P, Lightman S. Intravitreal steroids in the management of macular oedema. Acta Ophthalmol Scand. 2006;84(6):722–33.

    Article  CAS  PubMed  Google Scholar 

  6. Umland SP, Schleimer RP, Johnston SL. Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma. Pulm Pharmacol Ther. 2002;15(1):35–50.

    Article  CAS  PubMed  Google Scholar 

  7. Abraham SM, Lawrence T, Kleiman A, Warden P, Medghalchi M, Tuckermann J, et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J Exp Med. 2006;203(8):1883–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Haller JA, Bandello F, Belfort Jr R, Blumenkranz MS, Gillies M, Heier J, et al. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results. Ophthalmology. 2011;118(12):2453–60.

    Article  PubMed  Google Scholar 

  9. Elg M, Gustafsson D. A combination of a thrombin inhibitor and dexamethasone prevents the development of experimental disseminated intravascular coagulation in rats. Thromb Res. 2006;117(4):429–37.

    Article  CAS  PubMed  Google Scholar 

  10. Vachon P, Moreau JP. Low doses of dexamethasone decrease brain water content of collagenase-induced cerebral hematoma. Can J Vet Res = Rev Can Rech Vet. 2003;67(2):157–9.

    CAS  Google Scholar 

  11. Loftsson T, Hreinsdottir D, Stefansson E. Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J Pharm Pharmacol. 2007;59(5):629–35.

    Article  CAS  PubMed  Google Scholar 

  12. Boddu SH, Jwala J, Vaishya R, Earla R, Karla PK, Pal D, et al. Novel nanoparticulate gel formulations of steroids for the treatment of macular edema. J Ocul Pharmacol Ther: Off J Assoc Ocul Pharmacol Ther. 2010;26(1):37–48.

    Article  CAS  Google Scholar 

  13. Ebrahim S, Peyman GA, Lee PJ. Applications of liposomes in ophthalmology. Surv Ophthalmol. 2005;50(2):167–82.

    Article  PubMed  Google Scholar 

  14. Hsu J. Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol. 2007;18(3):235–9.

    Article  PubMed  Google Scholar 

  15. Weijtens O, Schoemaker RC, Lentjes EG, Romijn FP, Cohen AF, van Meurs JC. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. Ophthalmology. 2000;107(10):1932–8.

    Article  CAS  PubMed  Google Scholar 

  16. Cunningham MA, Edelman JL, Kaushal S. Intravitreal steroids for macular edema: the past, the present, and the future. Surv Ophthalmol. 2008;53(2):139–49.

    Article  PubMed  Google Scholar 

  17. Yamashita T, Uemura A, Kita H, Sakamoto T. Intraocular pressure after intravitreal injection of triamcinolone acetonide following vitrectomy for macular edema. J Glaucoma. 2007;16(2):220–4.

    Article  PubMed  Google Scholar 

  18. Gillies MC, Kuzniarz M, Craig J, Ball M, Luo W, Simpson JM. Intravitreal triamcinolone-induced elevated intraocular pressure is associated with the development of posterior subcapsular cataract. Ophthalmology. 2005;112(1):139–43.

    Article  PubMed  Google Scholar 

  19. Sheu MT, Chen SY, Chen LC, Ho HO. Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol. J Control Release: Off J Control Release Soc. 2003;88(3):355–68.

    Article  CAS  Google Scholar 

  20. Loftsson T, Hreinsdottir D. Determination of aqueous solubility by heating and equilibration: a technical note. AAPS PharmSciTech. 2006;7(1):E4.

    Article  PubMed  Google Scholar 

  21. Duong AD, Ruan G, Mahajan K, Winter JO, Wyslouzil BE. Scalable, semicontinuous production of micelles encapsulating nanoparticles via electrospray. Langmuir: ACS J Surf Colloids. 2014;30(14):3939–48.

    Article  CAS  Google Scholar 

  22. Mitra AK, Velagaleti PR, Natesan S, inventor. Ophthalmic Compositions. USA patent US 13/974,241. 2013.

  23. Craig JP, Simmons PA, Patel S, Tomlinson A. Refractive index and osmolality of human tears. Optom Vis Sci: Off Publ Am Acad Optom. 1995;72(10):718–24.

    Article  CAS  Google Scholar 

  24. Janszky I, Vamosi P, Orszagh I, Berta A. Demonstration of increasing standard pH value of lacrimal fluid with increase of flow rate. Acta Ophthalmol Scand. 2001;79(2):180–3.

    Article  CAS  PubMed  Google Scholar 

  25. Dong XY, Meng Y, Feng XD, Sun Y. A metal-chelate affinity reverse micellar system for protein extraction. Biotechnol Prog. 2010;26(1):150–8.

    CAS  PubMed  Google Scholar 

  26. Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, et al. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm. 2009;376(1–2):176–85.

    Article  CAS  PubMed  Google Scholar 

  27. Saxena V, Hussain MD. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine. 2012;7:713–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Hait SK, Moulik SP. Determination of critical micellar concentration of non-ionic surfactants by donor-acceptor interaction with iodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants. J Surfactant Deterg. 2001;4(3):303–9.

    Article  CAS  Google Scholar 

  29. Hariharan S, Minocha M, Mishra GP, Pal D, Krishna R, Mitra AK. Interaction of ocular hypotensive agents (PGF2 alpha analogs-bimatoprost, latanoprost, and travoprost) with MDR efflux pumps on the rabbit cornea. J Ocul Pharmacol Ther: Off J Assoc Ocul Pharmacol Ther. 2009;25(6):487–98.

    Article  CAS  Google Scholar 

  30. Acharya G, Lee CH, Lee Y. Optimization of cardiovascular stent against restenosis: factorial design-based statistical analysis of polymer coating conditions. PLoS ONE. 2012;7(8):e43100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chopra P, Hao J, Li SK. Iontophoretic transport of charged macromolecules across human sclera. Int J Pharm. 2010;388(1–2):107–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhu H, Chauhan A. Effect of viscosity on tear drainage and ocular residence time. Optom Vis Sci: Off Publ Am Acad Optom. 2008;85(8):715–25.

    Article  Google Scholar 

  33. Cholkar K, Patel A, Dutt Vadlapudi A, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Patents Nanomed. 2012;2(2):82–95.

    Article  CAS  Google Scholar 

  34. Cholkar K, Patel SP, Vadlapudi AD, Mitra AK. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther: Off J Assoc Ocul Pharmacol Ther. 2013;29(2):106–23.

    Article  CAS  Google Scholar 

  35. Mitra AK. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker; 2008.

    Google Scholar 

  36. Gao Y, Li LB, Zhai G. Preparation and characterization of Pluronic/TPGS mixed micelles for solubilization of camptothecin. Colloids Surf B: Biointerfaces. 2008;64(2):194–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lee SC, Huh KM, Lee J, Cho YW, Galinsky RE, Park K. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization. Biomacromolecules. 2007;8(1):202–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev. 1995;16:39–43.

    Article  CAS  Google Scholar 

  39. Järvinen KJT, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Rev. 1995;16:3–19.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study has been supported by NIH grants R01EY09171-16, R01EY010659-14 and LUX biosciences, NJ, USA. We would like to thank Dr. Vladimir Dusevich, UMKC School of Dentistry, for helping with the operation of transmission electron microscopy and Mrs. RajyaLaxmi Earla, UMKC school of Pharmacy for helping in NMR sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholkar, K., Hariharan, S., Gunda, S. et al. Optimization of Dexamethasone Mixed Nanomicellar Formulation. AAPS PharmSciTech 15, 1454–1467 (2014). https://doi.org/10.1208/s12249-014-0159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0159-y

KEY WORDS

Navigation