Skip to main content
Log in

Aerodynamic and Electrostatic Properties of Model Dry Powder Aerosols: a Comprehensive Study of Formulation Factors

  • Research Article
  • Theme: Advances in Formulation and Device Technologies for Pulmonary Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The impact of formulation variables on aerodynamic and electrostatic properties of dry powder aerosol particles is of great importance to the development of efficient and reproducible inhaler products. Systematic evaluation requires a well-designed series of experiments using appropriate methods. A factorial experimental design was employed. In broad terms, the conditions considered were two drugs, albuterol and budesonide, in combination with different excipients, drug concentrations, delivered doses, and metering system (capsule composition) and sampled under different flow conditions using standard entrainment tubes. Samples were collected in an electrical low-pressure impactor, to evaluate distribution of electrostatic properties, and an Andersen eight-stage nonviable cascade impactor, to estimate aerodynamic particle size distribution, concurrently. The deposition studies allowed calculation of approximate per particle charge levels for drug. The results showed very high particle charge levels, often in the 1,000–10,000 of elementary charges per particle range, orders of magnitude higher than charge levels predicted by the Boltzmann charge distribution. The charge levels are considerably higher than had previously been estimated (200e per particle).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Keskinen J, Pietarinen K, Lehtimaki M. Electrical low-pressure impactor. J Aerosol Sci. 1992;23:353–60.

    Article  CAS  Google Scholar 

  2. Lehmann U, Niemela V, Mohr M. New method for time-resolved diesel engine exhaust particle mass measurement. Environ Sci Technol. 2004;38:5704–11.

    Article  CAS  PubMed  Google Scholar 

  3. Maricq MM, Chase RE, Xu N, Podsiadlik DH. The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: gasoline vehicles. Environ Sci Technol. 2002;36:276–82.

    Article  CAS  PubMed  Google Scholar 

  4. Sanders PG, Xu N, Dalka TM, Maricq MM. Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests. Environ Sci Technol. 2003;37:4060–9.

    Article  CAS  PubMed  Google Scholar 

  5. Holmen BA, Qu Y. Uncertainty in particle number modal analysis during transient operation of compressed natural gas, diesel, and trap-equipped diesel transit buses. Environ Sci Technol. 2004;38:2413–23.

    Article  CAS  PubMed  Google Scholar 

  6. Brouwer DH, Gijsbers JH, Lurvink MW. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Ann Occup Hyg. 2004;48:439–53.

    Article  CAS  PubMed  Google Scholar 

  7. Ferge T, Maguhn J, Felber H, Zimmermann R. Particle collection efficiency and particle re-entrainment of an electrostatic precipitator in a sewage sludge incineration plant. Environ Sci Technol. 2004;38:1545–53.

    Article  CAS  PubMed  Google Scholar 

  8. Kwok PCL, Glower W, Chan H-K. Electrostatic charge characteristics of aerosols produced from metered dose inhalers. J Pharm Sci. 2005;94:2789–99.

    Article  CAS  PubMed  Google Scholar 

  9. Telko MJ, Kujanpaa J, Hickey AJ. Investigation of triboelectric charging in dry powder inhalers using electrical low pressure impactor (ELPI). Int J Pharm. 2007;336:352–60.

  10. Marjamaki M, Keskinen J, Chen DR, Pui DYH. Performance evaluation of the electrical low-pressure impactor (ELPI). J Aerosol Sci. 2000;31:249–61.

    Article  CAS  Google Scholar 

  11. Murtomaa M, Strengell S, Laine E, Bailey A. Measurement of electrostatic charge of an aerosol using a grid-probe. J Electrost. 2003;58:197–207.

    Article  Google Scholar 

  12. Murtomaa M et al. Effect of particle morphology on the triboelectrification in dry powder inhalers. Int J Pharm. 2004;282:107–14.

    Article  CAS  PubMed  Google Scholar 

  13. General Chapter <601> Aerosols, nasal sprays, metered dose inhalers, and dry powder inhalers, USP34/NF29, United States Pharmacopeial Convention, Rockville, MD, 1 (2011) 218–239.

  14. Physician’s Desk Reference, 66th (2012) Edition, PDR Network, Montvale, NJ, 2011.

  15. Steckel H, Bolzen N. Alternative sugars as potential carriers for dry powder inhalations. Int J Pharm. 2004;270:297–306.

    Article  CAS  PubMed  Google Scholar 

  16. Ganderton D. The generation of respirable clouds from coarse powder aggregates. J Biopharm Sci. 1992;3:101–5.

    Google Scholar 

  17. Clark AR, Hollingworth AM. The relationship between powder inhaler resistance and peak inspiratory conditions in healthy-volunteers—implications for in-vitro testing. J Aerosol Med. 1993;6:99–110.

    Article  CAS  PubMed  Google Scholar 

  18. Louey MD, van Oort M, Hickey AJ. Standardized entrainment tubed for the evaluation of pharmaceutical dry powder dispersion. J Aerosol Sci. 2006;37:1520–31.

    Article  CAS  Google Scholar 

  19. Xu Z, Mansour HM, Mulder T, McLean R, Langridge J, Hickey AJ. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 1. Albuterol sulfate and disodium cromoglycate. J Pharm Sci. 2010;99:3398–414. doi:10.1002/jps.22107.

    Article  CAS  PubMed  Google Scholar 

  20. Xu Z, Mansour HM, Mulder T, McLean R, Langridge J, Hickey AJ. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 2. Ipratropium bromide monohydrate and fluticasone propionate. J Pharm Sci. 2010;99:3415–29. doi:10.1002/jps.22100.

    Article  CAS  PubMed  Google Scholar 

  21. Mansour HM, Xu Z, Hickey AJ. Dry powder aerosols generated by standardized entrainment tubes from alternative sugar blends: 3. Trehalose dihydrate and D-mannitol carriers. J Pharm Sci. 2010;99:3430–41. doi:10.1002/jps.22101.

    Article  CAS  PubMed  Google Scholar 

  22. Xu Z, Mansour HM, Mulder T, McLean R, Langridge J, Hickey AJ. Heterogeneous particle deaggregation and its implication for therapeutic aerosol performance. J Pharm Sci. 2010;99:3442–61. doi:10.1002/jps.22057.

    Article  CAS  PubMed  Google Scholar 

  23. Xu Z, Mansour HM, Hickey AJ. Particle interactions in dry powder inhaler unit processes: a review. J Adhes Sci Technol Spec Issue Adhes Asp Pharma Sci. 2011;25:451–82.

    CAS  Google Scholar 

  24. Xu Z, Hickey AJ. A comparison of aerosol performance in standardized entrainment tubes vs dry powder inhaler devices. KONA Powder Part J. 2013;30:201–9.

    Article  CAS  Google Scholar 

  25. Liu BY, Pui DY, Rubow KL, Szymanski WW. Electrostatic effects in aerosol sampling and filtration. Ann Occup Hyg. 1985;29:251–69.

    Article  CAS  PubMed  Google Scholar 

  26. Hinds WC. Aerosol technology: properties, behavior, and measurement of airborne particles. New York: Wiley; 1999.

    Google Scholar 

  27. Cartwright S, Singh S, Bailey AG, Rose LJ. Electrostatic charging characteristics of polyethylene powder during pneumatic conveying. IEEE Trans Ind Appl. 1985;21:541–6.

    Article  Google Scholar 

  28. Zhao H, Castle GSP, Inculet II. The measurement of bipolar charge in poly-disperse powders using a vertical array of faraday pail sensors. J Electrost. 2002;55:261–78.

    Article  Google Scholar 

  29. Zhao H, Castle GSP, Inculet II, Bailey AG. Bipolar charging of poly-disperse polymer powders in fluidized beds. IEEE Trans Ind Appl. 2003;39:612–8.

    Article  Google Scholar 

  30. Lacks DJ, Levandovsky A. Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J Electrost. 2007;65:107–12.

    Article  CAS  Google Scholar 

  31. Duff N, Lacks DJ. Particle dynamics simulations of triboelectric charging in granular insulator systems. J Electrost. 2008;66:51–7.

    Article  Google Scholar 

  32. Bailey AG, Hashish AH, Williams TJ. Drug delivery by inhalation of charged particles. J Electrost. 1998;44:3–10.

    Article  CAS  Google Scholar 

  33. Fraser DA. The deposition of unipolar charged particles in the lungs of animals. Arch Environ Health. 1966;13:152–7.

    Article  CAS  PubMed  Google Scholar 

  34. Byron PB, Peart J, Staniforth JN. Aerosol electrostatics I: properties of fine powders before and after aerosolization by dry powder inhalers. Pharm Res. 1997;14:698–705.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Chris Wiesen, Statistical Consultant at the UNC Odum Institute, is gratefully acknowledged for valuable discussions of the experimental design and help with the analysis. M. Telko gratefully acknowledges the financial support from a U.S. Pharmacopeia Fellowship and PhRMA Foundation Predoctoral fellowship during the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Hickey.

Additional information

Guest Editors: Paul B. Myrdal and Steve W. Stein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telko, M.J., Hickey, A.J. Aerodynamic and Electrostatic Properties of Model Dry Powder Aerosols: a Comprehensive Study of Formulation Factors. AAPS PharmSciTech 15, 1378–1397 (2014). https://doi.org/10.1208/s12249-014-0144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0144-5

KEY WORDS

Navigation