Skip to main content

Advertisement

Log in

Nanocarrier for Poorly Water-Soluble Anticancer Drugs—Barriers of Translation and Solutions

  • Review Article
  • Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Many existing chemotherapeutic drugs, repurposed drugs and newly developed small-molecule anticancer compounds have high lipophilicity and low water-solubility. Currently, these poorly water-soluble anticancer drugs (PWSAD) are generally solubilized using high concentrations of surfactants and co-solvents, which frequently lead to adverse side effects. In recent years, researchers have been actively exploring the use of nanotechnology as an alternative to the solvent-based drug solubilization approach. Several classes of nanocarrier systems (lipid-based, polymer-based and albumin-based) are widely studied for encapsulation and delivery of the existing and new PWSAD. These nanocarriers were also shown to offer several additional advantages such as enhanced tumour accumulation, reduced systemic toxicity and improved therapeutic effectiveness. In this article, the recent nanotechnological advances in PWSAD delivery will be reviewed. The barriers commonly encountered in the development of PWSAD nanoformulations (e.g. formulation issues and nanotoxicity issues) and the strategies to overcome these barriers will also be discussed. It is our goal to provide the pharmaceutical scientists and clinicians with more in-depth information about the nanodelivery approach, thus, more efficacious and safe PWSAD nanoformulations can be developed with improved translational success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ramaswami R, Harding V, Newsom-Davis T. Novel cancer therapies: treatments driven by tumour biology. Postgrad Med J. 2013;89(1057):652–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284:109–22.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci. 2013;34(9):508–17.

    Article  CAS  PubMed  Google Scholar 

  4. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56(9):1273–89.

    Article  CAS  PubMed  Google Scholar 

  5. Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008;10(1):208–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ettmayer P, Amidon GL, Clement B, Testa B. Lessons learned from marketed and investigational prodrugs. J Med Chem. 2004;47:2393–404.

    Article  CAS  PubMed  Google Scholar 

  7. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–98.

    Article  CAS  PubMed  Google Scholar 

  8. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727. doi:10.5402/2012/195727.

    PubMed Central  PubMed  Google Scholar 

  9. Shin HC, Alani AWG, Rao DA, Rockich NC, Kwon GS. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release. 2009;140:294–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chen DB, Yang TZ, Lu WL, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharmaceut Bull. 2001;49:1444–47.

    Article  CAS  Google Scholar 

  11. Ma Y, Zheng Y, Zeng X, Jiang L, Chen H, Liu R, et al. Novel docetaxel-loaded nanoparticles based on PCL-Tween 80 copolymer for cancer treatment. Int J Nanomedicine. 2011;6:2679–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Drug.com. Paclitaxel injection, USP, monograph. .http://www.drugs.com/pro/paclitaxel.html (2013). Accessed 29 Oct 2013.

  13. Muthu MS, Kulkarni SA, Raju A, Feng SS. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials. 2012;33:3494–501.

    Article  CAS  PubMed  Google Scholar 

  14. Mohammed AR, Weston N, Coombes AGA, Fitzgerald M, Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int J Pharm. 2004;285:23–34.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang JA, Anyarambhatla G, Ma L, Ugwu S, Xuan T, Sardone T, et al. Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm. 2005;59:177–87.

    Article  CAS  PubMed  Google Scholar 

  16. Harfouche R, Basu S, Soni S, Hentschel DM, Mashelkar RA, Sengupta S. Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis. 2009;12:325–38.

    Article  CAS  PubMed  Google Scholar 

  17. Sistla A, Smith DJ, Kobrinsky NL, Kumar K. Pharmacokinetics and tissue distribution of liposomal etoposide in rats. Drug Deliv. 2009;16(8):423–9.

    Article  CAS  PubMed  Google Scholar 

  18. Jinturkar KA, Anish C, Kumar MK, Bagchi T, Panda AK, Misra AR. Liposomal formulations of etoposide and docetaxel for p53 mediated enhanced cytotoxicity in lung cancer cell lines. Biomaterials. 2012;33(8):2492–507.

    Article  CAS  PubMed  Google Scholar 

  19. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    Article  PubMed  Google Scholar 

  20. Yuan H, Wang LL, Du YZ, You J, Hu FQ, Zeng S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf B: Biointerfaces. 2007;60:174–9.

    Article  CAS  PubMed  Google Scholar 

  21. Saupe A, Rades T. Solid lipid nanoparticles. Nanocarrier technologies. Springer; 2007. p. 41–50.

  22. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:491–504.

    Article  CAS  PubMed  Google Scholar 

  23. Muller RH, Ruhl D, Runge S, Schulze-Forster K, Mehnert W. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm Res. 1997;14:458–62.

    Article  CAS  PubMed  Google Scholar 

  24. Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res. 2006;23:1574–85.

    Article  CAS  PubMed  Google Scholar 

  25. Yang S, Zhu J, Lu Y, Liang B, Yang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16:751–7.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan H, Miao J, Du YZ, You J, Hu FQ, Zeng S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int J Pharm. 2008;348:137–45.

    Article  CAS  PubMed  Google Scholar 

  27. Lim SJ, Lee MK, Kim CK. Altered chemical and biological activities of all-trans retinoic acid incorporated in solid lipid nanoparticle powders. J Control Release. 2004;100:53–61.

    Article  CAS  PubMed  Google Scholar 

  28. Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59:522–30.

    Article  PubMed  Google Scholar 

  29. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    Article  PubMed  Google Scholar 

  30. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26:523–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm. 2009;71:161–72.

    Article  CAS  PubMed  Google Scholar 

  32. Liu D, Liu Z, Wang L, Zhang C, Zhang N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B: Biointerfaces. 2011;85:262–9.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang XG, Miao J, Dai YQ, Du YZ, Yuan H, Hu FQ. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int JPharma. 2008;361:239–44.

    Article  CAS  Google Scholar 

  34. Chinsriwongkul A, Chareanputtakhun P, Ngawhirunpat T, Rojanarata T, Sila-on W, Ruktanonchai U, et al. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech. 2012;13:150–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Fang M, Jin Y, Bao W, Gao H, Xu M, Wang D, et al. In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration. Int J Nanomed. 2012;7:5395–404.

    Article  CAS  Google Scholar 

  36. Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB. Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B: Biointerfaces. 2010;81:263–73.

    Article  CAS  PubMed  Google Scholar 

  37. Liu X, Wang Z, Feng R, Hu Y, Huang G. A novel approach for systematic delivery of a hydrophobic anti-leukemia agent tamibarotene mediated by nanostructured lipid carrier. J Biomed Nanotech. 2013;9:1586–93.

    Article  CAS  Google Scholar 

  38. Constantinides PP, Tustian A, Kessler DR. Tocol emulsions for drug solubilization and parenteral delivery. Adv Drug Deliv Rev. 2004;56:1243–55.

    Article  CAS  PubMed  Google Scholar 

  39. Feng L, Mumper RJ. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett. 2013;334:157–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li X, Du L, Wang C, Liu Y, Mei X, Jin Y. Highly efficient and lowly toxic docetaxel nanoemulsions for intravenous injection to animals. Die Pharmazie. 2011;66:479–83.

    CAS  PubMed  Google Scholar 

  41. Gao H, Pang Z, Pan S, Cao S, Yang Z, Chen C, et al. Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharmacal Res. 2012;35:333–41.

    Article  Google Scholar 

  42. Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion-and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 2012;132:799–807.

    Article  CAS  Google Scholar 

  43. Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharmaceut. 2009;6:928–39.

    Article  CAS  Google Scholar 

  44. Chinsriwongkul A, Opanasopit P, Ngawhirunpat T, Rojanarata T, Sila-On W, Ruktanonchai U. Oleic acid enhances all-trans retinoic acid loading in nano-lipid emulsions. PDA J Pharm Sci Technol. 2010;64:113–23.

    CAS  PubMed  Google Scholar 

  45. Bulitta JB, Zhao P, Arnold RD, Kessler DR, Daifuku R, Pratt J, et al. Mechanistic population pharmacokinetics of total and unbound paclitaxel for a new nanodroplet formulation versus Taxol in cancer patients. Cancer Chemother Pharmacol. 2009;63(6):1049–63.

    Article  CAS  PubMed  Google Scholar 

  46. FDANews EZline. Phase III trial of tocosol paclitaxel does not meet primary endpoint http://fdanews.com/newsletter/article?issueId=10769&articleId=98911 (2007). Accessed 28 Oct 2013.

  47. Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):701–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30:1627–34.

    Article  CAS  PubMed  Google Scholar 

  49. Narvekar M, Xue HY, Wong HL. A novel hybrid delivery system: polymer-oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA). Int J Pharm. 2012;436:721–31.

    Article  CAS  PubMed  Google Scholar 

  50. Xue HY, Wong HL. Solid lipid-PEI hybrid nanocarrier: an integrated approach to provide extended, targeted, and safer siRNA therapy of prostate cancer in an all-in-one manner. ACS Nano. 2011;5:7034–47.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Chan JM, Gu FX, Rhee JW, Wang AZ, Radovic-Moreno AF, et al. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2:1696–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Exp Opin Drug Deliv. 2010;7:145–58.

    Article  CAS  Google Scholar 

  53. Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100:572–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lukyanov A, Gao Z, Mazzola L, Torchilin V. Polyethylene glycol-diacyllipid micelles demonstrate increased accumulation in subcutaneous tumors in mice. Pharma Res. 2002;19:1424–29.

    Article  CAS  Google Scholar 

  55. Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG, et al. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials. 2010;31:2408–16.

    Article  CAS  PubMed  Google Scholar 

  56. Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer. 2005;92:1240–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lim WT, Tan EH, Toh CK, Hee SW, Leong SS, Ang PCS, et al. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol®-PM) in patients with solid tumors. Ann Oncol. 2010;21:382–8.

    Article  CAS  PubMed  Google Scholar 

  58. Mu CF, Balakrishnan P, Cui FD, Yin YM, Lee YB, Choi HG, et al. The effects of mixed MPEG-PLA/Pluronic® copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials. 2010;31:2371–79.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Wang X, Wang J, Zhang X, Zhang Q. Octreotide-modified polymeric micelles as potential carriers for targeted docetaxel delivery to somatostatin receptor overexpressing tumor cells. Pharmaceutical research. 2011;28:1167–78.

    Article  CAS  PubMed  Google Scholar 

  60. Kawano K, Watanabe M, Yamamoto T, Yokoyama M, Opanasopit P, Okano T, et al. Enhanced antitumor effect of camptothecin loaded in long-circulating polymeric micelles. J Control Release. 2006;112:329–32.

    Article  CAS  PubMed  Google Scholar 

  61. Clinicaltrials.gov. A Phase III study of NK105 in patients with breast cancer. http://clinicaltrials.gov/show/NCT01644890 (2012). Accessed 28 Oct 2013.

  62. Clinicaltrials.gov. Evaluate the efficacy and safety of Genexol®-PM compared to Genexol® in recurrent or metastatic breast cancer. http://clinicaltrials.gov/ct2/show/NCT00876486?term=Genexol&rank=1 (2012). Accessed 28 Oct 2013.

  63. Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomedicine. 2008;4:273–82.

    Article  CAS  PubMed  Google Scholar 

  64. Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, et al. Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug Chem. 2006;17:1464–72.

    Article  CAS  PubMed  Google Scholar 

  65. McGowan I, Gomez K, Bruder K, Febo I, Chen BA, Richardson BA, et al. Phase 1 randomized trial of the vaginal safety and acceptability of SPL7013 gel (VivaGel) in sexually active young women (MTN-004). AIDS. 2011;25(8):1057–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Morgan MT, Nakanishi Y, Kroll DJ, Griset AP, Carnahan MA, Wathier M, et al. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 2006;66:11913–21.

    Article  CAS  PubMed  Google Scholar 

  67. Gajbhiye V, Jain NK. The treatment of glioblastoma xenografts by surfactant conjugated dendritic nanoconjugates. Biomaterials. 2011;32(26):6213–25.

    CAS  PubMed  Google Scholar 

  68. Cucinotto I, Fiorillo L, Gualtieri S, Arbitrio M, Ciliberto D, Staropoli N, et al. Nanoparticle albumin bound paclitaxel in the treatment of human cancer: nanodelivery reaches prime-time? J Drug Deliv. 2013;2013:905091.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Yardley DA. nab-Paclitaxel mechanisms of action and delivery. J Control Release. 2013;170(3):365–72.

    Article  CAS  PubMed  Google Scholar 

  70. Yuan Y, Zhao Y, Xin S, Wu N, Wen J, Li S, et al. A novel PEGylated liposome-encapsulated SANT75 suppresses tumor growth through inhibiting hedgehog signaling pathway. PLoS ONE. 2013;8(4):e60266.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Chenna V, Hu C, Pramanik D, Aftab BT, Karikari C, Campbell NR, et al. A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol Cancer Ther. 2012;11(1):165–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Apiratikul N, Penglong T, Suksen K, Svasti S, Chairoungdua A, Yingyongnarongkul B. In vitro delivery of curcumin with cholesterol-based cationic liposomes. Russian J Bioorgan Chem. 2013;39:444–50.

    Article  CAS  Google Scholar 

  73. Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin. Cancer Nanotech. 2012;3:65–81.

    Article  CAS  Google Scholar 

  74. Fang M, Jin Y, Bao W, Gao H, Xu M, Wang D, et al. In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration. Int J Nanomedicine. 2012;7:5395–404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion-and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 2012;132:799–807.

    Article  CAS  Google Scholar 

  76. Cho H, Lai TC, Kwon GS. Poly(ethylene glycol)-block-poly(−caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release. 2013;166(1):1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Hasenstein JR, Shin HC, Kasmerchak K, Buehler D, Kwon GS, Kozak KR. Antitumor activity of Triolimus: a novel multidrug-loaded micelle containing paclitaxel, rapamycin, and 17-AAG. Mol Cancer Ther. 2012;11(10):2233–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–22.

    Article  CAS  PubMed  Google Scholar 

  79. Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85:530–36.

    Article  CAS  PubMed  Google Scholar 

  80. Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci. 2004;93:1804–14.

    Article  CAS  PubMed  Google Scholar 

  81. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73:121–36.

    Article  CAS  PubMed  Google Scholar 

  82. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release. 2002;79:123–35.

    Article  CAS  PubMed  Google Scholar 

  83. Maherani B, Arab-Tehrany ER, Mozafari M, Gaiani C, Linder M. Liposomes: a review of manufacturing techniques and targeting strategies. Curr Nanoscience. 2011;7:436–52.

    Article  CAS  Google Scholar 

  84. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–27.

    Article  CAS  PubMed  Google Scholar 

  85. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5:496–504.

    Article  CAS  PubMed  Google Scholar 

  86. Pisanic 2nd TR, Blackwell JD, Shubayev VI, Fiñones RR, Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials. 2007;28:2572–81.

    Article  CAS  PubMed  Google Scholar 

  87. Fischer HC, Chan WCW. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol. 2007;18:565–71.

    Article  CAS  PubMed  Google Scholar 

  88. Budhian A, Siegel SJ, Winey KI. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencap. 2005;22:773–85.

    Article  CAS  Google Scholar 

  89. Yang Z, Luo X, Zhang X, Liu J, Jiang Q. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles. Biomed Mater. 2013;8:025012.

    Article  PubMed  Google Scholar 

  90. Mora-Barrantes I, Valentín JL, Rodríguez A, Quijada-Garrido I, Paris R. Poly (styrene)/silica hybrid nanoparticles prepared via ATRP as high-quality fillers in elastomeric composites. J Mater Chem. 2012;22:1403–10.

    Article  CAS  Google Scholar 

  91. Tchoul MN, Dalton M, Tan LS, Dong H, Hui CM, Matyjaszewski K, et al. Enhancing the fraction of grafted polystyrene on silica hybrid nanoparticles. Polymer. 2012;53:79–86.

    Article  CAS  Google Scholar 

  92. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60:1615–26.

    Article  CAS  PubMed  Google Scholar 

  93. Han H, Davis ME. Single antibody, targeted nanoparticle delivery of camptothecin. Mol Pharm. 2013;10:2558–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Cirstoiu-Hapca A, Buchegger F, Lange N, Bossy L, Gurny R, Delie F. Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: therapeutic efficacy and biodistribution in mice. J Control Release. 2010;144:324–31.

    Article  CAS  PubMed  Google Scholar 

  95. Pan J, Feng SS. Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials. 2008;29:2663–72.

    Article  CAS  PubMed  Google Scholar 

  96. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–46.

    Article  CAS  PubMed  Google Scholar 

  97. Shimada T, Ueda M, Jinno H, Chiba N, Wada M, Watanabe J, et al. Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res. 2009;29(4):1009–14.

    CAS  PubMed  Google Scholar 

  98. Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev. 2007;59:164–82.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was in part supported by National Institutes of Health/National Cancer Institute R01 grant (R01CA168917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Lun Wong.

Additional information

Guest Editors: Mahavir B. Chougule and Chalet Tan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narvekar, M., Xue, H.Y., Eoh, J.Y. et al. Nanocarrier for Poorly Water-Soluble Anticancer Drugs—Barriers of Translation and Solutions. AAPS PharmSciTech 15, 822–833 (2014). https://doi.org/10.1208/s12249-014-0107-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0107-x

KEY WORDS

Navigation