Skip to main content
Log in

Fast Tablet Tensile Strength Prediction Based on Non-Invasive Analytics

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this paper, linkages between tablet surface roughness, tablet compression forces, material properties, and the tensile strength of tablets were studied. Pure sodium halides (NaF, NaBr, NaCl, and NaI) were chosen as model substances because of their simple and similar structure. Based on the data available in the literature and our own measurements, various models were made to predict the tensile strength of the tablets. It appeared that only three parameters—surface roughness, upper punch force, and the true density of material—were needed to predict the tensile strength of a tablet. Rather surprising was that the surface roughness alone was capable in the prediction. The used new 3D imaging method (Flash sizer) was roughly a thousand times quicker in determining tablet surface roughness than traditionally used laser profilometer. Both methods gave practically analogous results. It is finally suggested that the rapid 3D imaging can be a potential in-line PAT tool to predict mechanical properties of tablets in production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bos CE, Bolhuis GK, Lerk CF, de Boer JH, Duineveld CAA, Smilde AK, et al. The use of a factorial design to evaluate the physical stability of tablets prepared by direct compression. I. A new approach based on the relative change in tablet parameters. Eur J Pharm Biopharm. 1991;37:204–9.

    CAS  Google Scholar 

  2. Sinka IC, Motazedian F, Cocks ACF, Pitt KG. The effect of processing parameters on pharmaceutical tablet properties. Powder Technol. 2009;189:276–84.

    Article  CAS  Google Scholar 

  3. Gustafsson C, Nyström C, Lennholm H, Bonferoni MC, Caramella CM. Characteristics of hydroxypropyl methylcellulose influencing compactibility and prediction of particle and tablet properties by infrared spectroscopy. J Pharm Sci. 2003;92:494–504.

    Article  CAS  PubMed  Google Scholar 

  4. Tabasi SH, Fahmy R, Bensley D, O’Brien C, Hoag SW. Quality by design, part I: applications of NIR spectroscopy to monitor tablet manufacturing process. J Pharm Sci. 2008;97:4040–51.

    Article  CAS  PubMed  Google Scholar 

  5. Virtanen S, Antikainen O, Yliruusi J. Determination of the crushing strength of intact tablets using Raman spectroscopy. Int J Pharm. 2008;360:40–6.

    Article  CAS  PubMed  Google Scholar 

  6. Podczeck F. Methods for the practical determination of the mechanical strength of tablets—from empiricism to science. Int J Pharm. 2012;436:214–32.

    Article  CAS  PubMed  Google Scholar 

  7. Akseli I, Cetinkaya C. Air-coupled non-contact mechanical property determination of drug tablets. Int J Pharm. 2008;359:25–34.

    Article  CAS  PubMed  Google Scholar 

  8. Simonaho S-P, Takala TA, Kuosmanen M, Ketolainen J. Ultrasound transmission measurements for tensile strength evaluation of tablets. Int J Pharm. 2011;409:104–10.

    Article  CAS  PubMed  Google Scholar 

  9. Leskinen JTT, Simonaho S-P, Hakulinen M, Ketolainen J. Real-time tablet formulation monitoring with ultrasound measurements in eccentric single station tablet press. Int J Pharm. 2013;442:27–34.

    Article  CAS  PubMed  Google Scholar 

  10. Poon CY, Bhushan B. Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear. 1995;190:76–88.

    Article  CAS  Google Scholar 

  11. Seitavuopio P, Rantanen J, Yliruusi J. Tablet surface characterisation by various imaging techniques. Int J Pharm. 2003;254:281–6.

    Article  CAS  PubMed  Google Scholar 

  12. Vorburger TV, Marx E, Lettieri TR. Regimes of surface roughness measurable with light scattering. Appl Opt. 1993;32:3401–8.

    Article  CAS  PubMed  Google Scholar 

  13. Windecker R, Tiziani HJ. Optical roughness measurements using extended white-light interferometry. Opt Eng. 1999;38:1081–7.

    Article  Google Scholar 

  14. Wang SH, Quan C, Tay CJ, Shang HM. Surface roughness measurement in the submicrometer range using laser scattering. Opt Eng. 2000;39:1597–601.

    Article  Google Scholar 

  15. Juuti M, van Veen B, Peiponen K-E, Ketolainen J, Kalima V, Silvennoinen R, et al. Local and average gloss from flat-faced sodium chloride tablets. AAPS PharmSciTech. 2006;7(1):E1–6.

    Article  Google Scholar 

  16. García-Muñoz S, Carmody A. Multivariate wavelet texture analysis for pharmaceutical solid product characterization. Int J Pharm. 2010;398:97–106.

    Article  PubMed  Google Scholar 

  17. Närvänen T, Seppälä K, Antikainen O, Yliruusi J. A new rapid on-line imaging method to determine particle size distribution of granules. AAPS PharmSciTech. 2008;9:282–7.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Soppela I, Airaksinen S, Hatara J, Räikkönen H, Antikainen O, Yliruusi J, et al. Rapid particle size measurement using 3D surface imaging. AAPS PharmSciTech. 2011;12:476–84.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Fell JT, Newton JM. The tensile strength of lactose tablets. J Pharm Pharmacol. 1968;20:667–8.

    Google Scholar 

  20. Krogars K, Antikainen O, Heinämäki J, Laitinen N, Yliruusi J. Tablet film-coating with amylose-rich maize starch. Eur J Pharm Sci. 2002;17:23–30.

    Article  CAS  PubMed  Google Scholar 

  21. Woodham RJ. Photometric method for determining surface orientation from multiple images. Opt Eng. 1980;19:139–44.

    Article  Google Scholar 

  22. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S. Multi- and megavariate data analysis part I: basic principles and applications. Umeå: Umetrics Academy; 2006.

    Google Scholar 

  23. Lindberg N-O, Jönsson C, Holmquist B. Optimization of disintegration time and crushing strength of a tablet formulation. Drug Dev Ind Pharm. 1985;11:931–43.

    Article  CAS  Google Scholar 

  24. Antikainen O, Tervakangas H, Pietiläinen J, Yliruusi J, Sandler N. Screening of particle size related segregation behavior of granules with surface image analysis. AAPS 2006; J8.

  25. Virtanen S, Antikainen O, Räikkönen H, Yliruusi J. Granule size distribution of tablets. J Pharm Sci. 2010;99:2061–69.

    CAS  PubMed  Google Scholar 

  26. Khan F, Pilpel N, Ingram S. The effect of moisture on the density, compaction and tensile strength of microcrystalline cellulose. Powder Technol. 1988;54:161–4.

    Article  CAS  Google Scholar 

  27. Malamataris S, Goidas P, Dimitriou A. Moisture sorption and tensile strength of some tableted direct compression excipients. Int J Pharm. 1991;68:51–60.

    Article  CAS  Google Scholar 

  28. Procopio AT, Zavaliangos A. Simulation of multi-axial compaction of granular media from loose to high relative densities. J Mech Phys Solids. 2005;53:1523–51.

    Article  Google Scholar 

  29. Siiriä S-M. Towards understanding powder behavior via simulation [dissertation]. Helsinki: University of Helsinki; 2011.

    Google Scholar 

  30. Podczeck F, Drake KR, Newton JM. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology. Int J Pharm. 2013;454:412–24.

    Article  CAS  PubMed  Google Scholar 

  31. Narayan P, Hancock BC. The relationship between the particle properties, mechanical behavior, and surface roughness of some pharmaceutical excipient compacts. Mater Sci Eng A. 2003;355:24–36.

    Article  Google Scholar 

  32. Ahlneck C, Alderborn G. Moisture absorption and tableting. I. Effect on volume reduction properties and tablet strength for some crystalline materials. Int J Pharm. 1989;54:131–41.

    Article  CAS  Google Scholar 

  33. Obae K, Iijima H, Imada K. Morphological effect of microcrystalline cellulose particles on tablet tensile strength. Int J Pharm. 1999;182:155–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Halenius.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplement 1

(DOCX 28 kb)

Supplement 2

(JPEG 164 kb)

High resolution image

(TIFF 15,889 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halenius, A., Lakio, S., Antikainen, O. et al. Fast Tablet Tensile Strength Prediction Based on Non-Invasive Analytics. AAPS PharmSciTech 15, 781–791 (2014). https://doi.org/10.1208/s12249-014-0104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0104-0

Key words

Navigation