AAPS PharmSciTech

, Volume 15, Issue 3, pp 762–771 | Cite as

Particle Margination and Its Implications on Intravenous Anticancer Drug Delivery

  • Erik Carboni
  • Katherine Tschudi
  • Jaewook Nam
  • Xiuling Lu
  • Anson W. K. MaEmail author
Review Article Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy
Part of the following topical collections:
  1. Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy


“Margination” refers to the movement of particles in flow toward the walls of a channel. The term was first coined in physiology for describing the behavior of white blood cells (WBCs) and platelets in blood flow. The margination of particles is desirable for anticancer drug delivery because it results in the close proximity of drug-carrying particles to the endothelium, where they can easily diffuse into cancerous tumors through the leaky vasculature. Understanding the fundamentals of margination may further lead to the rational design of particles and allow for more specific delivery of anticancer drugs into tumors, thereby increasing patient comfort during cancer treatment. This paper reviews existing theoretical and experimental studies that focus on understanding margination. Margination is a complex phenomenon that depends on the interplay between inertial, hydrodynamic, electrostatic, lift, van der Waals, and Brownian forces. Parameters that have been explored thus far include the particle size, shape, density, stiffness, shear rate, and the concentration and aggregation state of red blood cells (RBCs). Many studies suggested that there exists an optimal particle size for margination to occur, and that nonspherical particles tend to marginate better than spherical particles. There are, however, conflicting views on the effects of particle density, stiffness, shear rate, and RBCs. The limitations of using the adhesion of particles to the channel walls in order to quantify margination propensity are explained, and some outstanding questions for future research are highlighted.


blood cancer margination nanocarriers nanoparticles 



This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1247393, the National Science Foundation under grant no. 1250661, and the Department of Defense Mentor-Predoctoral Fellow Research Award program under award number W81XWH-10-1-0434. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation, the US Army, or the Department of Defense.


  1. 1.
    Munn L, Dupin M. Blood cell interactions and segregation in flow. Ann Biomed Eng. 2008;36(4):534–44.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Jain A, Munn LL. Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip. Lab Chip. 2011;11(17):2941–7.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Hou HW, Bhagat AAS, Chong AGL, Mao P, Tan KSW, Han JY, et al. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip. 2010;10(19):2605–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Hou HW, Gan HY, Bhagat AAS, Li LD, Lim CT, Han J. A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics. 2012;6(2):13.Google Scholar
  5. 5.
    Gentile F, Chiappini C, Fine D, Bhavane RC, Peluccio MS, Cheng MMC, et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech. 2008;41(10):2312–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Godin B, Serda RE, Sakamoto J, Decuzzi P, Ferrari M. Nanoparticles for cancer detection and therapy. Nanotechnology: Wiley-VCH Verlag GmbH & Co. KGaA; 2010.Google Scholar
  7. 7.
    Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: does geometry really matter? Pharm Res. 2009;26(1):235–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Kumar A, Graham MD. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett. 2012;109(10):5.CrossRefGoogle Scholar
  9. 9.
    Toetsch S, Olwell P, Prina-Mello A, Volkov Y. The evolution of chemotaxis assays from static models to physiologically relevant platforms. Integr Biol. 2009;1(2):170–81.CrossRefGoogle Scholar
  10. 10.
    Dutrochet H. Recherches anatomiques et physiologiques sur la structure intime des animaux et des végétaux, et sur leur motilité: J. B. Baillière; 1824.Google Scholar
  11. 11.
    Vejlens G. The distribution of leukocytes in the vascular system. Acta Pathol Microbiol Scand (Suppl). 1938;33:1–239.Google Scholar
  12. 12.
    Langer HF, Chavakis T. Leukocyte-endothelial interactions in inflammation. J Cell Mol Med. 2009;13(7):1211–20.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Charoenphol P, Onyskiw PJ, Carrasco-Teja M, Eniola-Adefeso O. Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery. J Biomech. 2012;45(16):2822–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Lim EJ, Ober TJ, Edd JF, McKinley GH, Toner M. Visualization of microscale particle focusing in diluted and whole blood using particle trajectory analysis. Lab Chip. 2012;12(12):2199–210.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Namdee K, Thompson AJ, Charoenphol P, Eniola-Adefeso O. Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels. Langmuir. 2013;29(8):2530–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Segré G, Silberberg A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J Fluid Mech. 1962;14(01):136–57.CrossRefGoogle Scholar
  17. 17.
    Gulan U, Luthi B, Holzner M, Liberzon A, Tsinober A, Kinzelbach W. Experimental study of aortic flow in the ascending aorta via particle tracking velocimetry. Exp Fluids. 2012;53(5):1469–85.CrossRefGoogle Scholar
  18. 18.
    Di Carlo D. Inertial microfluidics. Lab Chip. 2009;9(21):3038–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Goldsmith HL, Spain S. Margination of leukocytes in blood-flow through small tubes. Microvasc Res. 1984;27(2):204–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Fedosov DA, Caswell B, Popel AS, Karniadakis GE. Blood flow and cell-free layer in microvessels. Microcirculation. 2010;17(8):615–28.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Abkarian M, Viallat A. Dynamics of vesicles in a wall-bounded shear flow. Biophys J. 2005;89(2):1055–66.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Abkarian M, Lartigue C, Viallat A. Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys Rev Lett. 2002;88(6):068103.PubMedCrossRefGoogle Scholar
  23. 23.
    Mohandas N, Chasis JA. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol. 1993;30(3):171–92.PubMedGoogle Scholar
  24. 24.
    Ferri M, Lombardini S, Pallotti C, editors. Leukocyte classifications by size functions. Applications of Computer Vision, 1994, Proceedings of the Second IEEE Workshop on; 1994 5–7 Dec 1994.Google Scholar
  25. 25.
    Schmid-Schönbein GW, Usami S, Skalak R, Chien S. The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res. 1980;19(1):45–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Fedosov DA, Fornleitner J, Gompper G. Margination of white blood cells in microcapillary flow. Phys Rev Lett. 2012;108(2):028104.PubMedCrossRefGoogle Scholar
  27. 27.
    Bishop JJ, Popel AS, Intaglietta M, Johnson PC. Effects of erythrocyte aggregation and venous network geometry on red blood cell axial migration. Am J Physiol-Heart Circ Physiol. 2001;281(2):H939–50.PubMedGoogle Scholar
  28. 28.
    Kirby B. Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press; 2010.Google Scholar
  29. 29.
    Einstein A, Fürth R. Investigations on the theory of the Brownian movement. Dover Publications; 1956.Google Scholar
  30. 30.
    Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology. 2011;22(11):9.CrossRefGoogle Scholar
  31. 31.
    Charoenphol P, Huang RB, Eniola-Adefeso O. Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials. 2010;31(6):1392–402.PubMedCrossRefGoogle Scholar
  32. 32.
    Gentile F, Curcio A, Indolfi C, Ferrari M, Decuzzi P. The margination propensity of spherical particles for vascular targeting in the microcirculation. J Nanobiotechnology. 2008;6:9.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Tan JF, Shah S, Thomas A, Ou-Yang HD, Liu YL. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluid. 2013;14(1–2):77–87.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tan JF, Thomas A, Liu YL. Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter. 2012;8(6):1934–46.CrossRefGoogle Scholar
  35. 35.
    Decuzzi P, Gentile F, Granaldi A, Curcio A, Causa F, Indolfi C, et al. Flow chamber analysis of size effects in the adhesion of spherical particles. Int J Nanomed. 2007;2(4):689–96.Google Scholar
  36. 36.
    Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR. The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv. 2012;3(2):181–94.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lee SY, Ferrari M, Decuzzi P. Design of bio-mimetic particles with enhanced vascular interaction. J Biomech. 2009;42(12):1885–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee SY, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology. 2009;20(49):11.CrossRefGoogle Scholar
  39. 39.
    Decuzzi P, Lee S, Bhushan B, Ferrari M. A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng. 2005;33(2):179–90.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee TR, Choi M, Kopacz AM, Yun SH, Liu WK, Decuzzi P. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better. Sci Rep. 2013;3:8.Google Scholar
  41. 41.
    Doshi N, Prabhakarpandian B, Rea-Ramsey A, Pant K, Sundaram S, Mitragotri S. Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J Control Release. 2010;146(2):196–200.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Freund JB. Leukocyte margination in a model microvessel. Phys Fluids. 2007;19(2):13.CrossRefGoogle Scholar
  43. 43.
    Kumar A, Graham MD. Segregation by membrane rigidity in flowing binary suspensions of elastic capsules. Phys Rev E. 2011;84(6):17.CrossRefGoogle Scholar
  44. 44.
    Kumar A, Graham MD. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter. 2012;8(41):10536–48.CrossRefGoogle Scholar
  45. 45.
    Nobis U, Pries AR, Cokelet GR, Gaehtgens P. Radial distribution of white cells during blood flow in small tubes. Microvasc Res. 1985;29(3):295–304.PubMedCrossRefGoogle Scholar
  46. 46.
    Abbitt KB, Nash GB. Characteristics of leucocyte adhesion directly observed in flowing whole blood in vitro. Br J Haematol. 2001;112(1):55–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Firrell JC, Lipowsky HH. Leukocyte margination and deformation in mesenteric venules of rat. Am J Physiol. 1989;256(6):H1667–74.PubMedGoogle Scholar
  48. 48.
    Jain A, Munn LL. Determinants of leukocyte margination in rectangular microchannels. PLoS One. 2009;4(9):8.CrossRefGoogle Scholar
  49. 49.
    Pearson MJ, Lipowsky HH. Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am J Physiol Heart Circ Physiol. 2000;279(4):H1460–71.PubMedGoogle Scholar
  50. 50.
    Yang XX, Forouzan O, Burns JM, Shevkoplyas SS. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections. Lab Chip. 2011;11(19):3231–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Prabhakarpandian B, Wang Y, Rea-Ramsey A, Sundaram S, Kiani MF, Pant K. Bifurcations: focal points of particle adhesion in microvascular networks. Microcirculation. 2011;18(5):380–9.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Carugo D, Capretto L, Nehru E, Mansour M, Smyth N, Bressloff N, et al. A microfluidic-based arteriolar network model for biophysical and bioanalytical investigations. Curr Anal Chem. 2013;9(1):47–59.CrossRefGoogle Scholar
  53. 53.
    Perry JL, Herlihy KP, Napier ME, Desimone JM. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res. 2011;44(10):990–8.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Doi M, Makino M. Sedimentation of particles of general shape. Phys Fluids. 2005;17(4):7.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Erik Carboni
    • 1
  • Katherine Tschudi
    • 2
  • Jaewook Nam
    • 3
  • Xiuling Lu
    • 4
  • Anson W. K. Ma
    • 1
    • 5
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.School of Chemical EngineeringSungkyunkwan UniversitySuwonSouth Korea
  4. 4.Department of Pharmaceutical SciencesUniversity of ConnecticutStorrsUSA
  5. 5.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations