Skip to main content
Log in

New Direct Compression Excipient from Tigernut Starch: Physicochemical and Functional Properties

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Tigernut starch has been isolated and modified by forced retrogradation of the acidic gel by freezing and thawing processes. Relevant physicochemical and functional properties of the new excipient (tigernut starch modified by acid gelation and accelerated (forced) retrogradation (STAM)) were evaluated as a direct compression excipient in relation to the native tigernut starch (STNA), intermediate product (tigernut starch modified by acid gelation (STA)), and microcrystalline cellulose (MCC). The particle morphology, swelling capacity, moisture sorption, differential scanning calorimeter (DSC) thermographs and X-ray powder diffraction (XRD) patterns, flow, dilution capacity, and tablet disintegration efficiency were evaluated. The particles of STNA were either round or oval in shape, STA were smooth with thick round edges and hollowed center while STAM were long, smooth, and irregularly shaped typically resembling MCC. The DSC thermographs of STNA and MCC showed two endothermic transitions as compared with STA and STAM which showed an endothermic and an exothermic. The moisture uptake, swelling, flow, and dilution capacity of STAM were higher than those of MCC, STA, and STNA. The XRD pattern and moisture sorption profile of STAM showed similarities and differences with STNA, STA, and MCC that relate the modification. Acetylsalicylic acid (ASA) tablets containing STAM disintegrated at 3 ± 0.5 min as compared with the tablets containing STNA, STA, and MCC which disintegrated at 8.5 ± 0.5, 10 ± 0.5, and 58 ± 0.8 min, respectively. The study shows the physicochemical properties of tigernut starch modified by forced retrogradation as well as its potential as an efficient direct compression excipient with enhanced flow and disintegration abilities for tablets production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

STNA :

Native tigernut starch

STA :

Tigernut starch modified by acid gelation

STAM :

Tigernut starch modified by acid gelation and accelerated (forced) retrogradation

MCC:

Microcrystalline cellulose

Apn:

Acetaminophen

ASA:

Acetyls alicylic acid

SEM:

Scanning electron micrograph

RH:

Relative humidity

REFERENCES

  1. Attama AA, Builders PF. Particulate drug delivery: recent applications of natural biopolymers. In: Adikwu MU, editor. Biopolymer in drug delivery: recent advances and challenges. Bentham e-Books; 2009. p. 63–94. http://www.benthamdirect.org/pages/b_getarticlebybook.php.

  2. Moorthy SN. Physicochemical and functional properties of tropical tuber starches: a review. Starch-Starke. 2002;54:559–92.

    Article  CAS  Google Scholar 

  3. Korhonen O, Raatikainen P, Harjunen P, Nakari J, Suihko E, Peltonen S, et al. Starch acetates-multifunctional direct compression excipients. Pharm Res. 2000;17:1138–43.

    Article  CAS  PubMed  Google Scholar 

  4. Ojinnaka MC, Akobundu ENT, Iwe MO. Cocoyam starch modification effects on functional, sensory and cookies qualities. Pak J Nutr. 2009;8(5):558–67.

    Article  CAS  Google Scholar 

  5. Kim YK, Robyt JF. Enzyme modification of starch granules: formation and retention of cyclomaltodextrins inside starch granules by reaction of cyclomaltodextrin glucanosyltransferase with solid granules. Carbohydr Res. 2000;328(4):509–15.

    Article  CAS  PubMed  Google Scholar 

  6. Jane J, Seib PA. Preparation of granular cold water swelling/soluble starches by alcoholic-alkali treatments. Patent 5057157 Issued on October 15, 1991. Estimated Expiration Date: October 22, 2010. Freepatentsonline http://www.freepatentsonline.com/5057157.html.

  7. Oyi AR, Apeji YE, Musa H. Compact analysis of microcrystalline cassava starch—a direct compression binder. Niger J Pharm Sci. 2009;8(2):59–65.

    Google Scholar 

  8. Bolhuis GK, Chowhan ZT. Materials for direct compression, pharmaceutical powder compaction technology. In: Alderborn G, Nystrom C, editors. Pharmaceutical powder compaction technology. USA: Marcel Dekker; 1996. p. 419–99.

    Google Scholar 

  9. Bodga MJ. Tablet compression: machine theory, design and process troubleshooting. In: Swarbrick J, Boylan J. editors. Encyclopedia of Pharmaceutical Technology. New York: Marcel Dekker Inc.; 2002. p. 719–99.

  10. Toro-Vazquez JF, Gómez-Aldapa CA. Chemical and physicochemical properties of maize starch after industrial nixtamalization. Cereal Chem. 2001;78(5):543–50.

    Article  CAS  Google Scholar 

  11. Henry G, Westby A. Global cassava end-uses and markets: current situation and recommendations for further study. Final Report of a Fao Consultancy. Montpellier: CIRAD-AMIS; 1998.

    Google Scholar 

  12. Alexander RJ. Potato starch: new prospects for an old product. Cereal Food World. 1995;40(10):763–4.

    Google Scholar 

  13. Woolfe JA. Sweet potato: an untapped food resource. Cambridge: Cambridge University Press; 1992.

  14. Manek RV, Kunle OO, Emeje MO, Builders PF, Rama Rao GV, Lopez GP, et al. Physical, Thermal and sorption profile of starch obtained from Tacca leontopetaloides. Starch-Starke. 2005;57:55–61.

    Article  CAS  Google Scholar 

  15. Manek RV, Builders PF, Kolling WM, Emeje M, Kunle OO. Physicochemical and binder properties of starch obtained from Cyperus esculentus. AAPS PharmSciTech. 2012;13(2):1–10. doi:10.1208/s12249-012-9761-z.

    Article  Google Scholar 

  16. Belewu MA, Abodunrin OA. Preparation of kunnu from unexploited rich food source: tigernut (Cyperus esculentus). Pak J Nutr. 2008;7(1):109–11.

    Article  CAS  Google Scholar 

  17. Lowe J, Stanfield DP. The flora of Nigeria sedge (Family Cypraceae). Ibadan: Ibadan University Press; 1974.

    Google Scholar 

  18. Adejuyitan JA, Otunola ET, Akande EA, Bolarinwa IF, Oladokun FM. Some physicochemical properties of flour obtained from fermentation of tigernut (Cyperus esculentus) sourced from a market in Ogbomoso, Nigeria. Afr J Food Sci. 2009;3(2):051–5.

    CAS  Google Scholar 

  19. Abano EE, Amoah KK. Effect of moisture content on the physical properties of tigernut (Cyperus esculentus). Asian J Agric Res. 2001;5(1):56–66.

    Article  Google Scholar 

  20. Cantalejo MJ. Analysis of volatile components derived from raw and roasted earth almond (Cyperus esculentus L.). J Agric Food Chem. 1997;45:1853–60.

    Article  CAS  Google Scholar 

  21. Sathe SK, Salunkhe DK. Isolation, partial characterization and modification of the great Northern bean (Phaseolus vulgaris L.) starch. J Food Sci. 1981;46:617–21.

    Article  CAS  Google Scholar 

  22. Builders PF, Chukwu C, Obidike I, Builders M, Attama AA, Adikwu MU. A novel xyloglucan gum from seeds of Afzelia africana Se. Pers.: some functional and physicochemical properties. Inter J Green Pharm, 2009; 3:112–8.

    Google Scholar 

  23. Builders PF, Nnurum A, Mbah CC, Attama AA, Manek R. The physicochemical and binding properties of starch from Persea americana Miller (Lauraceae). Starch-Starke. 2010;62:309–20.

    Article  CAS  Google Scholar 

  24. Well J. Pharmaceutical preformulation the physicochemical properties of drug substances. In: Aulton ME, editor. The science of dosage form design. Toronto: Churchill Livingstone; 2003. p. 113–35.

    Google Scholar 

  25. Builders PF, Isimi YC, Kunle OO. Gum from the bark of Anogeissius leiocarpus, as a potential pharmaceutical raw material-granule properties. J Pharm Bio-resour. 2005;2(1):85–91.

    Google Scholar 

  26. Quinn JR, Paton DA. Practical measurement of water hydration capacity of protein materials. Cereal Chem. 1979;56:38–40.

    CAS  Google Scholar 

  27. Kornblum SS, Stoopak SB. A new tablet disintegrant agent: crosslinked polyvinylpyrollidone. J Pharm Sci. 1973;62(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  28. Beristain C, Perez-Alonso CI, Lobato-Calleros C, Rodriguez-Huezo ME, Vernon-Carter EJ. Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. J Food Eng. 2006;77:753–60.

    Article  Google Scholar 

  29. Lin YC, Chen X. Moisture sorption–desorption–resorption characteristics and its effect on the mechanical behaviour of the epoxy system. Polymer. 2005;46:11994–2003.

    Article  CAS  Google Scholar 

  30. Builders PF, Agbo MB, Adelakun T, Okpako LC, Attama AA. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending. Int J Pharm. 2010;388:159–67.

    Article  CAS  PubMed  Google Scholar 

  31. Bi YX, Sunada H, Danjo K. Evaluation of rapidly disintegrating tablets prepared by a direct compression method. Drug Dev Ind Pharm. 1999;25:571–81.

    Article  CAS  PubMed  Google Scholar 

  32. Pharmacopoeia B. The British Pharmacopoeia Commission, vol. II. UK: HMSO; 1993.

    Google Scholar 

  33. Emelugo BN, Umerie SC, Okonkwo IF, Achufusi JN. Evaluation of the tubers and oil of Cyperus rotundus Linn (Cyperaceae). Pak J Nutr. 2011;10(2):147–50.

    Article  CAS  Google Scholar 

  34. Linssen JPH, Cozijnsen JL, Pilnik W. Chufa (Cyperus esculentus): a new source of dietary fiber. J Food Sci Agric. 1989;49(3):291–96.

    Article  Google Scholar 

  35. Chung YL, Lai HM. Molecular and granular characteristics of corn starch modified by HCl-methanol at different temperatures. Carbohydr Polym. 2006;63:527–34.

    Article  CAS  Google Scholar 

  36. Lin JH, Lee SY, Chang YH. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohydr Polym. 2003;53:475–82.

    Article  CAS  Google Scholar 

  37. Danjo K, Kinoshita K, Kitagawa K, Iida K, Sunada H, Otsuka A. Effect of particle shape on the compaction and flow properties of powders. Chem Pharm Bull. 1989;37(11):3070–3.

    Article  CAS  Google Scholar 

  38. Ansel HC, Allen LV, Popovich NG. Ansel’s pharmaceutical dosage forms and drug delivery systems. 8th ed. Philadelphia: Linppincott Williams and Wilkins; 2005.

    Google Scholar 

  39. Zografi G, Kontny MJ. The interactions of water with cellulose- and starch-derived pharmaceutical excipients. Pharm Res. 1986;3:187–94.

    Article  Google Scholar 

  40. Sair L, Fetzer WR. Water sorption by starches. Ind J Eng Chem. 1944;36:205–08.

    Article  CAS  Google Scholar 

  41. Burnett DJ, Thielmann F, Sokoloski T, Brum J. Investigating the moisture-induced crystallization kinetics of spray-dried lactose. Int J Pharm. 2006;313:23–8.

    Article  CAS  PubMed  Google Scholar 

  42. Tester RF, Morrison WR. Swelling and gelatinzation of cereal starches: waxy rice starches. Cereal Chem. 1990;67:558–63.

    CAS  Google Scholar 

  43. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al. Reporting physicsorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations). J Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  44. Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids. London: Academic; 1999.

    Google Scholar 

  45. Bell L, Labuza TP. Moisture sorption: practical aspects of isotherm measurement and use. 2nd ed. St. Paul: American Association of Cereal Chemists; 2000.

    Google Scholar 

  46. Calandrelli L, Immirzi B, Malinconico M, Volpe MG, Oliva A, Della RF. Preparation and characterization of composites based on biodegradable polymers for “in vivo” application. Polymer. 2000;41:8027–33.

    Article  CAS  Google Scholar 

  47. Mark HF, Bikales N, editors. Encyclopedia of polymer science and engineering; “crystallinity determination.” Encyclopedia of polymer science and engineering. New York: Wiley; 1989. p. 482–87.

    Google Scholar 

  48. Zobel HF. Molecules to granules: a comprehensive starch review. Starch-Starke. 1998;40:44–50.

    Article  Google Scholar 

  49. Atichokudomchaia N, Shobsngob S, Chinachotic P, Varavinita S. A study of some physicochemical properties of high-crystalline tapioca starch. Starch-Starke. 2001;53:577–81.

    Article  Google Scholar 

  50. Rickard JE, Asaoka M, Blanshard JMV. The physicochemical properties of cassava starch. Trop Sci. 1991;31:189–207.

    Google Scholar 

  51. Takeda Y, Tokunaga N, Takeda C, Hizukuri S. Physicochemical properties of sweet potato starches. Starch-Starke. 1986;38:345–50.

    Article  CAS  Google Scholar 

  52. Defloor I, Dehing I, Delcour JA. Physicochemical properties of cassava starch. Starch-Starke. 1998;50:58–64.

    Article  CAS  Google Scholar 

  53. Zhao N, Augsburger LL. Functional comparison of three classes of superdisintegrants in promoting aspirin tablets disintegration and dissolution. AAPS PharmSciTech. 2005;6:634–40.

    Article  Google Scholar 

  54. Caramella C, Colombo P, Conte U, et al. Water uptake and disintegrating force measurements: towards a general understanding of disintegration mechanisms. Drug Dev Ind Pharm. 1986;12:1749–66.

    Article  CAS  Google Scholar 

  55. Alderborn G, Nyström C. Radial and axial tensile strength and strength variability of paracetamol tablets. ACTA Pharm Suec. 1984;21:1.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip F. Builders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Builders, P.F., Anwunobi, P.A., Mbah, C.C. et al. New Direct Compression Excipient from Tigernut Starch: Physicochemical and Functional Properties. AAPS PharmSciTech 14, 818–827 (2013). https://doi.org/10.1208/s12249-013-9968-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9968-7

Key words

Navigation