Skip to main content

Advertisement

Log in

Electrospun Chitosan Microspheres for Complete Encapsulation of Anionic Proteins: Controlling Particle Size and Encapsulation Efficiency

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Electrospinning was employed to fabricate chitosan microspheres by a single-step encapsulation of proteins without organic solvents. Chitosan in acetic acid was electrospun toward a grounded sodium carbonate solution at various electric potential and feeding rates. Electrospun microspheres became insoluble and solidified in the sodium carbonate solution by neutralization of chitosan acetate. When the freeze-dried microspheres were examined by scanning electron microscopy, the small particle size was obtained at higher voltages. This is explained by the chitosan droplet size at the electrospinning needle was clearly controllable by the electric potential. The recovery yield of chitosan microspheres was dependent on the concentration of chitosan solution due to the viscosity is the major factor affecting formation of chitosan droplet during curling of the electrospinning jets. For protein encapsulation, fluorescently labeled bovine serum albumin (BSA) was codissolved with chitosan in the solution and electrospun. At higher concentration of sodium carbonate solution and longer solidification time in the solution, the encapsulation efficiency of the protein was confirmed to be significantly high. The high encapsulation efficiency was achievable by instant solidification of microspheres and electrostatic interactions between chitosan and BSA. Release profiles of BSA from the microspheres showed that the protein release was faster in acidic solution due to dissolution of chitosan. Reversed-phase chromatography of the released fractions confirmed that exposure of BSA to acidic solution during the electrospinning did not result in structural changes of the encapsulated protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Zhu G, Mallery SR, Schwendeman SP. Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nat Biotechnol. 2000;18:52–7.

    Article  CAS  PubMed  Google Scholar 

  2. Okada H, Heya T, Igari Y, Ogawa Y, Toguchi H, Shimamoto T. One-month release injectable microspheres of leuprolide acetate inhibit steroidogenesis and genital organ growth in rats. Int J Pharm. 1989;54:231–9.

    Article  CAS  Google Scholar 

  3. Jain RA, Rhodes CT, Raikar AM, Malick AW, Shah NH. Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: effect of various formulation variables. Eur J Pharm Biopharm. 2000;50:257–62.

    Article  CAS  PubMed  Google Scholar 

  4. Yan C, Resau JH, Hewetson J, West M, Rill WL, Kende M. Characterization and morphological analysis of protein-loaded poly (lactide-co-glycolide) microparticles prepared by water-in-oil-in-water emulsion technique. J Control Release. 1994;32:231–41.

    Article  CAS  Google Scholar 

  5. Lemoine D, Wauters F, Bouchend’homme S, Preat V. Preparation and characterization of alginate microspheres containing a model antigen. Int J Pharm. 1998;176:9–19.

    Article  CAS  Google Scholar 

  6. Prottey C, Ferguson TFM. The effect of surfactants upon rat peritoneal mast cells in vitro. Food Cosmet Toxicol. 1976;14:425–30.

    Article  CAS  PubMed  Google Scholar 

  7. Ernst R, Arditti J. Biological effects of surfactants. IV. Effects of non-ionics and amphoterics on hela cells. Toxicology. 1980;15:233–42.

    Article  CAS  PubMed  Google Scholar 

  8. Baimark Y. Preparation of organic solvent/surfactant-free microspheres of methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) by a melt dispersion method. Asian J Appl Sci. 2009;2:341–7.

    Article  CAS  Google Scholar 

  9. Li JK, Wang N, Wu XS. Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J Microencapsul. 1998;15:163–72.

    Article  CAS  PubMed  Google Scholar 

  10. Sebti T, Amighi K. Preparation and in vitro evaluation of lipidic carriers and fillers for inhalation. Eur J Pharm Biopharm. 2006;63:51–8.

    Article  CAS  PubMed  Google Scholar 

  11. Bittner B, Mader K, Kroll C, Borchert HH, Kissel T. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of g-irradiation on radical formation and polymer degradation. J Control Release. 1999;59:23–32.

    Article  CAS  PubMed  Google Scholar 

  12. Sashiwa H, Aiba S. Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci. 2004;29:887–908.

    Article  CAS  Google Scholar 

  13. Dutta PK, Dutta J, Tripathi VS. Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res. 2004;63:20–31.

    CAS  Google Scholar 

  14. Wang YC, Lin MC, Wang DM, Hsieh HJ. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials. 2003;24:1047–57.

    Article  CAS  PubMed  Google Scholar 

  15. Kast CE, Frick W, Losert U, Schnurch AB. Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering. Int J Pharm. 2003;256:183–9.

    Article  CAS  PubMed  Google Scholar 

  16. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–78.

    Article  CAS  Google Scholar 

  17. Mi FL, Sung HW, Shyu SS. Release of indomethacin from a novel chitosan microsphere prepared by a naturally occurring crosslinker: examination of crosslinking and polycation-anionic drug interaction. J Appl Polym Sci. 2001;81:1700–11.

    Article  CAS  Google Scholar 

  18. Wang LY, Gu YH, Zhou QZ, Ma GH, Wan YH, Su ZG. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf B Biointerfaces. 2006;50:126–35.

    Article  CAS  PubMed  Google Scholar 

  19. He P, Davis SS, Illum L. Chitosan microspheres prepared by spray drying. Int J Pharm. 1999;187:53–65.

    Article  CAS  PubMed  Google Scholar 

  20. Muzzarelli C, Stanic V, Gobbi L, Tosi G, Muzzarelli RAA. Spray-drying of solutions containing chitosan together with polyuronans and characterization of the microspheres. Carbohydr Polym. 2004;57:73–82.

    Article  CAS  Google Scholar 

  21. Desai KG, Park HJ. Effect of manufacturing parameters on the characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres prepared by spray-drying. J Microencapsul. 2006;23:91–103.

    Article  CAS  PubMed  Google Scholar 

  22. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, et al. Electrospinning of collagen and elastin for tissue engineering application. Biomaterials. 2006;25:724–34.

    Article  Google Scholar 

  23. Lee S, Obendorf SK. Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res. 2007;77:696–702.

    Article  CAS  Google Scholar 

  24. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–82.

    Article  CAS  PubMed  Google Scholar 

  25. Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Macromolecules. 2006;7:1623–9.

    CAS  Google Scholar 

  26. Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials. 2008;29:587–96.

    Article  CAS  PubMed  Google Scholar 

  27. Choi JS, Yoo HS. Nano-inspired fibrous matrix with bi-phasic release of proteins. J Nanosci Nanotechnol. 2010;10:3038–45.

    Article  CAS  PubMed  Google Scholar 

  28. Cho YI, Choi JS, Jeong SY, Yoo HS. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater. 2010;6:4725–33.

    Article  CAS  PubMed  Google Scholar 

  29. Sanders EH, Kioefkorn R, Bowlin GL, Simpson DG, Wnek GE. Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibers. Macromolecules. 2003;36:3803–5.

    Article  CAS  Google Scholar 

  30. Kim SE, Park JH, Cho YW, Chung H, Jeong SY, Lee EB, et al. Porous chitosan scaffold containing microspheres loaded with transforming growth factor- β1: Implications for cartilage tissue engineering. J Control Release. 2003;91:365–74.

    Article  CAS  PubMed  Google Scholar 

  31. Schiffman JD, Stulga LA, Schauer CL. Chitin and chitosan: transformations due to the electrospinning process. Polym Eng Sci. 2009;49:1918–28.

    Article  CAS  Google Scholar 

  32. Sangsanoh P, Supaphol P. Stability improvement of electrospun chitosan nanofibrous membranes in neutral or basic aqueous solutions. Biomacromolecules. 2006;7:2710–4.

    Article  CAS  PubMed  Google Scholar 

  33. Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effect of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913–22.

    Article  CAS  Google Scholar 

  34. Lee HW, Karin MR, Ji HM, Choi JH, Ghim HD, Park SM, et al. Electrospinning fabrication and characterization of poly(vinyl alcohol)/montmorillonite nanofiber mats. J Appl Polym Sci. 2009;113:1860–7.

    Article  CAS  Google Scholar 

  35. Geng X, Kwon OH, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 2005;26:5427–32.

    Article  CAS  PubMed  Google Scholar 

  36. Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresornanle nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. Biomed Mater Res B Appl Biomater. 2004;70:286–96.

    Google Scholar 

  37. Son B, Yeom BY, Song SH, Lee CS, Hwang TS. Antibacterial electrospun chitosan/poly(vinyl alcohol) nanofibers containing silver nitrate and titanium dioxide. J Appl Polym Sci. 2008;111:2892–9.

    Article  Google Scholar 

  38. Ohsawa O, Lee KH, Kim BS, Lee S, Kim IS. Preparation and characterization of polyketone (PK) fibrous membrane via electrospinning. Polymer. 2010;51:2007–12.

    Article  CAS  Google Scholar 

  39. Choi JS, Yoo HS. Eletrospun nanofibers surface-modified with fluorescent proteins. J Bioact Compat Polym. 2007;22:508–24.

    Article  CAS  Google Scholar 

  40. Kim HS, Yoo HS. MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation. J Control Release. 2010;145:264–71.

    Article  CAS  PubMed  Google Scholar 

  41. Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25:1883–90.

    Article  CAS  PubMed  Google Scholar 

  42. Ding B, Kim HY, Lee SC, Lee DR, Choi KJ. Preparation and characterization of nanoscaled poly(vinyl alcohol) fibers via electrospinning. Fiber Polym. 2002;3:73–9.

    Article  CAS  Google Scholar 

  43. Carrasquillo KG, Stanley AM, Aponte-Carro JC, Jesus PD, Costantino HR, Bosques CJ, et al. Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein. J Control Release. 2001;76:199–208.

    Article  CAS  PubMed  Google Scholar 

  44. Crotts G, Park TG. Preparation of porous and nonporous biodegradable polymeric hollow microspheres. J Control Release. 1995;35:91–105.

    Article  CAS  Google Scholar 

  45. Calvo P, Remuflan-Lopez C, Vila-Jato JL, Alouso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 1997;14:1431–6.

    Article  CAS  PubMed  Google Scholar 

  46. Yu CY, Yin BC, Zhang W, Cheng SX, Zhang XZ, Zhuo RX. Conposite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids Surf B Biointerfaces. 2009;68:245–9.

    Article  CAS  PubMed  Google Scholar 

  47. Nold MJ, Wesdemiotis C, Yalcin T, Harrison AG. Amide bond dissociation in protonated peptides. Structures of the N-terminal ionic and neutral fragments. Int J Mass Spectrom Ion Process. 1997;164:137–53.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the grant from the National Research Foundation (grant #: 2012000717R1A1A2) and the leaders in Industry–University Cooperation (LINC) program of Kangwon National University funded by the Ministry of Education, Science, and Technology, Republic of Korea. We thank Eunju Jo for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seo Young Jeong or Hyuk Sang Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.S., Kim, Y., Kang, J. et al. Electrospun Chitosan Microspheres for Complete Encapsulation of Anionic Proteins: Controlling Particle Size and Encapsulation Efficiency. AAPS PharmSciTech 14, 794–801 (2013). https://doi.org/10.1208/s12249-013-9965-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9965-x

KEY WORDS

Navigation